New technology reveals insights into mechanisms underlying amyloid diseases

A schematic of the intermediate structure in the aggregation pathway of amylin. Credit: Zhang, Buchanan, Zanni, Biomedical Spectroscopy and Imaging

Amyloid diseases, such as Alzheimer's disease, type 2 diabetes, cataracts, and the spongiform encephalopathies, all share the common trait that proteins aggregate into long fibers which then form plaques. Yet in vitro studies have found that neither the amylin monomer precursors nor the plaques themselves are very toxic. New evidence using two-dimensional infrared (2D IR) spectroscopy has revealed an intermediate structure during the amylin aggregation pathway that may explain toxicity, opening a window for possible interventions, according to a report in the current issue of Biomedical Spectroscopy and Imaging.

"Figuring out how and why form is exceedingly difficult, because one needs to follow the atomic shapes of the molecules as they assemble. Most tools in biology give either shapes or motions, but not both. We have been developing a new spectroscopic tool, called two-dimensional , which can monitor the plaques as they form in a test tube," said lead investigator Martin T. Zanni, PhD, of the Department of Chemistry at the University of Wisconsin-Madison.

The investigators employed this new technology to study the associated with . Isotope labeling was used to measure the secondary structure content of individual residues. By following many 2D IR spectra from one particular region (known as the FGAIL region) over several hours, they were able to visualize the amylin as it progressed from monomers to fibers.

"We learned that, prior to making the plaques, the proteins first assemble into an unexpected and intriguing intermediate and organized structure," commented Dr. Zanni. The proteins undergo a transition from disordered coil (in the monomer), to ordered β-sheet (in the oligomer) to disordered structure again (in the fiber).

These results help to elucidate the physics of the aggregation process, the chemistry of amyloid inhibitors, and the biology of type 2 diabetes, as well as clarify previously contradictory data.

The authors suggest that differences between species in their capacity to develop type 2 diabetes may be related to the capacity to form these intermediate amylin structures. That may be why humans develop the disease while dogs and rats do not. "I am not encouraging us to begin engineering our DNA to match that of rats, but our findings may help to develop plaque inhibitors or hormone replacement therapies for people suffering from type 2 diabetes, because we know the structure we want to avoid," says Dr. Zanni. He adds that mutations in the FGAIL region may inhibit fiber formation by interfering with the formation of these intermediates.

More information: "Insights into amylin aggregation by 2D IR spectroscopy," by Tianqi O. Zhang, Lauren E. Buchanan, Martin T. Zanni. Biomedical Spectroscopy and Imaging, Volume 3/Issue 3. DOI: 10.3233/BSI-140078

add to favorites email to friend print save as pdf

Related Stories

Monster mash: Protein folding gone wrong

Nov 01, 2013

Imagine a 1950s horror movie monster—a creeping, gelatinous, gluey tangle of gunk that strangles everything around it. That's what amyloid plaques are like when they form in body tissues. These gooey protein ...

Recommended for you

Antioxidant biomaterial promotes healing

40 minutes ago

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

Immune response may cause harm in brain injuries, disorders

2 hours ago

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

One route to malaria drug resistance found

6 hours ago

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious ...

Protein therapy successful in treating injured lung cells

6 hours ago

Cardiovascular researchers at The Ohio State University Wexner Medical Center have successfully used a protein known as MG53 to treat acute and chronic lung cell injury. Additionally, application of this protein proved to ...

User comments