Researchers find clue to stopping Alzheimer's-like diseases

June 27, 2014 by Chris Bunting, University of Leeds
The folded state of a protein involved in the formation of amyloid plaques.

(Medical Xpress)—Tiny differences in mice that make them peculiarly resistant to a family of conditions that includes Alzheimer's, Parkinson's and Creutzfeldt-Jakob Disease may provide clues for treatments in humans.

Amyloid diseases are often incurable because drug designers cannot identify the events that cause them to start.

Professor Sheena Radford, Astbury Professor of Biophysics at the University of Leeds, said: "Amyloid diseases are associated with the build-up of fibrous plaques out of long strings of 'misfolding' proteins, but it is not clear what kicks the process off. That means the normal approach of designing a drug to destroy or disable the species that start the disease process does not work.

"We have to take a completely different tack: instead of targeting the cause of the disease, we need to disrupt the plaque building process."

The University of Leeds-led team's study, published in the journal Molecular Cell today, looked to mice for a way forward.

"We already knew that mice were not prone to the build up of some of these plaques. This study, for the first time, observed the building happening and saw the differences between the mice proteins and their almost identical human equivalents," Professor Radford said.

She added: "We mixed the mice and human proteins and found that the mice protein actually stopped the formation of the plaque-forming fibrils by the human protein."

The research was conducted completely in the test-tube using human and mice beta-2 microglobulin proteins produced in the laboratory. Plaques made up of beta-2 microglobulin are associated with Dialysis Related Amyloidosis (DRA). Instead of being a neurodegenerative condition like Alzheimer's or Parkinson's,  DRA primarily affects the joints of people on kidney dialysis.

The team observed differences in the formation of the plaque-forming fibrils in samples containing only mice protein, samples with only the human protein and samples containing mixtures of the two.

The lead researcher, Dr Theodoros Karamanos, said: "These two versions of the proteins are almost exactly the same, with very slight differences in structure, but the outcomes are completely different. If I put a misfolding-prone protein in the human sample, I see the formation of fibrils in two days in the right conditions. If I do the same in the mouse sample, I can leave it for weeks and there are no fibrils.

Dr Karamanos added: "The exciting thing is that if you mix the proteins—with only one mouse protein for every five human proteins—you see a significant disruption of the formation of fibrils."

The study used Nuclear Magnetic Resonance spectroscopy to look at a molecular level at the interactions of the different proteins and identified tiny differences in the physical and chemical properties of the surfaces that made a great difference to whether plaques are formed.

The results showed that the mouse protein binds to the human protein more tightly than the human protein binds to its misfolded form. Interestingly, subtle differences in the driving forces of binding (i.e. the balance of hydrophobic and charge-charge interactions) in the binding interface govern the outcome of assembly.

Dr Karamanos said: "We can't just load up a syringe and inject mouse protein into patients. But if we know the properties of the interface between the two proteins that are responsible for the inhibition effect, we can ask the chemists to design small molecule drugs which mimic what the mouse protein does to the . That may be a key insight into how to stop the plaque building process."

Explore further: Genetically engineered mice that more accurately reproduce the conditions of Alzheimer's disease

More information: Theodoros K. Karamanos et. al., 'Visualization of Transient Protein-Protein Interactions that Promote or Inhibit Amyloid Assembly,' Molecular Cell (2014) DOI: 10.1016/j.molcel.2014.05.026 ; URL: http://dx.doi.org/10.1016/j.molcel.2014.05.026

Related Stories

Genetically engineered mice that more accurately reproduce the conditions of Alzheimer's disease

June 6, 2014
Potential therapies for Alzheimer's disease are currently studied using genetically engineered mouse strains that display many of the key features of the disease. Most of these mouse models overexpress the amyloid precursor ...

Fighting Alzheimer's disease with protein origami

July 12, 2013
Alzheimer's disease is a progressive degenerative brain disease most commonly characterized by memory deficits. Loss of memory function, in particular, is known to be caused by neuronal damage arising from the misfolding ...

Compound reverses symptoms of Alzheimer's disease in mice, research shows

May 20, 2014
A molecular compound developed by Saint Louis University scientists restored learning, memory and appropriate behavior in a mouse model of Alzheimer's disease, according to findings in the May issue of the Journal of Alzheimer's ...

Monster mash: Protein folding gone wrong

November 1, 2013
Imagine a 1950s horror movie monster—a creeping, gelatinous, gluey tangle of gunk that strangles everything around it. That's what amyloid plaques are like when they form in body tissues. These gooey protein clumps are ...

Research offers new way to target shape-shifting proteins

August 28, 2011
(PhysOrg.com) -- A molecule which can stop the formation of long protein strands, known as amyloid fibrils, that cause joint pain in kidney dialysis patients has been identified by researchers at the University of Leeds.

Recommended for you

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

Molecular mechanism behind HIV-associated dementia revealed

January 5, 2018
For the first time, scientists have identified and inhibited a molecular process that can lead to neurodegeneration in patients with HIV, according to a Northwestern Medicine study published in Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.