Doing nature one better: Expanding the genetic code in living mammalian cells

July 1, 2007

Researchers at the Salk Institute for Biological Studies have developed a novel strategy to expand the natural repertoire of 20 amino acids in mammalian cells, including neurons, and successfully inserted tailor-made amino acids into proteins in these cells. In a powerful demonstration of the method’s versatility, they then used unnatural amino acids to determine the operating mechanism of the “molecular gates” that regulate the movement of potassium ions in and out of nerve cells.

“In the past, this type of engineering has been mainly restricted to bacteria or in yeast, and it was very challenging to efficiently incorporate unnatural amino acids in mammalian cells. But most biomedical questions have to be studied in the cells of higher organisms and animal models to arrive at meaningful answers,” explains Lei Wang, Ph.D., an assistant professor in the Chemical Biology and Proteomics Laboratory, who led the current study published in the July issue of Nature Neuroscience.

The genetic code, which is shared by plants, animals and bacteria, includes 64 codons encoding 20 different amino acids and three stop signals. Being able to expand the code and insert non-natural amino not only greatly enhances researchers' ability and precision, but also provides novel tools for addressing challenging questions insurmountable with conventional means.

“We had tried using conventional mutagenesis to introduce mutations into the potassium channel but it didn’t give us any answers,” says Paul A. Slesinger, Ph.D., an associate professor in the Peptide Biology Laboratory, who collaborated with Wang on the current study. “Being able to incorporate bulky unnatural amino acids into living mammalian cells really made all the difference,” he adds.

During his graduate studies, Wang pioneered a method to accommodate additional amino acids in bacteria. His approach mimicked the strategy every cell relies on to incorporate conventional amino acids into proteins: During protein synthesis, amino acids are brought out one by one by molecules known as transfer RNAs (tRNA) and added to the growing protein chain according to the instructions spelled out in the genetic code till a stop codon — for which no corresponding tRNA/amino acid pair exists — lets everybody know that this particular job is done.

From a large pool of mutated aminoacyl-tRNA synthetases — the enzyme that loads tRNAs with their corresponding amino acids — Wang selected the one that would attach a desired artificial amino acid to a tRNA that recognizes one of the stop codons. Every time the stop codon appeared in the genetic code, the new tRNA would insert the artificial amino acid.

But doing the same trick in mammalian cells becomes way more complicated. Simply transferring the bacterial genes into mammalian cells doesn’t work since they flat out refuse to produce bacterial tRNAs. While it is easy to screen large numbers of mutated aminoacyl-tRNA synthetases in bacteria and yeast, it can’t be done in mammalian cells in the same way. But Wang and his team got around both obstacles.

“We found that we could coerce mammalian cells to express bacterial tRNAs by using the H1 promoter,” says first author Wenyuan Wang, Ph.D., a postdoctoral researcher in Wang’s laboratory. Relying on yeast to do the dirty job of finding a synthetase that recognizes tRNA and attaches the right unnatural amino acid helped them to overcome the second challenge. “Using yeast for the selection process and then transferring the enzyme for use in mammalian cells may sound like a naïve idea, but members from the same kingdom behave very similarly in terms of tRNA synthetases and it worked,” he adds.

After a green fluorescence protein-based functional assay in various mammalian cells and neurons literally gave them the green light, Wang teamed up with Slesinger, who studies ion channels in the brain, to illustrate that this technology can solve otherwise intractable biological questions.

When a signal travels along a nerve cell, the potassium channel Kv1.4, which belongs to a class of so-called fast-inactivating ion channels, opens briefly and then quickly shuts down. Structural studies had suggested that in a process similar to threading a needle the channel’s flexible head feeds through a small portal and blocks the central pore of the channel. Wang and Slesinger used the new unnatural technology as a molecular ruler to answer the question whether increasing the size of the thread had an effect on the speed of inactivation"

“We introduced mutations into the thread, so it would be too big to fit through the hole,” says Wang, “but we couldn’t see a difference with natural amino acids.” Adding even bulkier, artificial amino acids provided the answer. “Now the process of inactivation was really slow, supporting the hypothesis that the diameter of the flexible head plays a crucial role in the fast inactivation of this channel,” adds Slesinger.

Source: Salk Institute

Explore further: New study reveals breast cancer cells recycle their own ammonia waste as fuel

Related Stories

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

Brain cells that control appetite identified for first time

September 27, 2017
Dieting could be revolutionised, thanks to the ground-breaking discovery by the University of Warwick of the key brain cells which control our appetite.

A new approach to cancer drug discovery

September 30, 2017
Scientists at The Scripps Research Institute (TSRI) have developed and demonstrated a promising new strategy for the discovery of novel anti-cancer therapies.

New insights on the addictions of tumors

October 6, 2017
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) and UC San Diego have shown that tumors can ensure a more reliable nutrient supply by eliminating the p62 protein in surrounding stromal tissue. Specifically, ...

Research reveals how rabies can induce frenzied behavior

October 11, 2017
Scientists may finally understand how the rabies virus can drastically change its host's behavior to help spread the disease, which kills about 59,000 people annually.

Zika virus mutated around 2013, leading to birth defects: study

September 28, 2017
Zika has been around for decades but only recently began to cause birth defects due to a single mutation the mosquito-borne virus likely acquired in 2013, researchers said Thursday.

Recommended for you

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.