Genes may make some people more motivated to eat, perhaps overeat

October 15, 2007

Science has found one likely contributor to the way that some folks eat to live and others live to eat. Researchers at the University at Buffalo, The State University of New York, have found that people with genetically lower dopamine, a neurotransmitter that helps make behaviors and substances more rewarding, find food to be more reinforcing than people without that genotype. In short, they are more motivated to eat and they eat more.

The findings appear in the October issue of Behavioral Neuroscience, which is published by the American Psychological Association (APA). Insights into genes and eating could inspire custom-tailored treatment programs for obesity, perhaps including genetically targeted drugs.

Led by Leonard Epstein, PhD, a distinguished professor of pediatrics and social and preventive medicine at the university’s medical school, the team brought 29 obese adults and 45 adults who were not obese into the lab for a controlled study of the relationships among genotype, motivation to eat and caloric consumption.

Epstein’s team was particularly interested in the influence of the Taq1 A1 allele, a genetic variation linked to a lower number of dopamine D2 receptors and carried by about half the population (most of which carries one A1 and one A2; carriers of two A1 alleles are rare). The other half of the population carries two copies of A2, which by fostering more dopamine D2 receptors may make it easier to experience reward. People with fewer receptors need to consume more of a rewarding substance (such as drugs or food) to get that same effect.

Epstein differentiates reinforcing value, defined by how hard someone will work for food, from the “feel good” pleasure people get from food, saying, “They often go together, but are not the same thing.”

Researchers measured participants’ body mass, swabbed DNA samples from inside their cheeks, and had them fill out eating questionnaires. There were two behavioral tasks.

In the first task, participants rated various foods – from chips to candy bars – for taste and personal preference. This apparent preference test disguised a task that measured how much participants ate when food was freely available.

In the second task, participants could swivel between two computer stations. Pressing specified keys on one earned points to eat their favorite food; pressing keys on the other earned points to read a newspaper.

The resulting behavioral measures included calories consumed as energy in kilocalories, reflecting both amount and caloric density, and time spent earning food instead of the opportunity to read the news.

Both obesity and the genotype associated with fewer dopamine D2 receptors predicted a significantly stronger response to food’s reinforcing power. Perhaps not surprisingly, participants with that high level of food reinforcement consumed more calories.

The results also revealed a three-rung ladder of consumption, with people who don’t find food that reinforcing, regardless of genotype, on the lowest rung. On the middle rung are people high in food reinforcement without the A1 allele. Atop the ladder are people high in food reinforcement with the allele, a potent combination that may put them at higher risk for obesity.

The reinforcing value of food, which may be influenced by dopamine genotypes, appeared to be a significantly stronger predictor of consumption than self-reported liking of the favorite food. What’s more, obese participants clearly found food to be more reinforcing than non-obese participants. The authors conclude that, “Food is a powerful reinforcer that can be as reinforcing as drugs of abuse.”

Researchers still view reinforcement as one of several factors that motivate eating behavior, but the present study highlights the genetic contribution and role of reinforcement. In theory, people producing less dopamine may, as a result, require more food to reach a certain state of reward or reinforcement that might be reached quicker, after less consumption, by those with a different genotype.

Findings such as these can help obesity experts to pinpoint people at greater risk for obesity and to develop treatments tailored to specific risk factors. “Behavior and biology interact and influence each other,” says Epstein. “The genotype does not cause obesity; it is one of many factors that may contribute to it. I think the factors that make up eating behavior are in part genetic and in part learning history.”

He and his colleagues speculate that, as with other public-health campaigns, it may be better to focus behavior change efforts on those at high risk. “A strategy for someone who is high in food reinforcement would be very different from the strategy for someone who is low in food reinforcement but higher in activity reinforcement,” they wrote. Using overweight men, the group has already found that chemically manipulating dopamine levels alters eating behavior, a finding highly suggestive for pharmaceutical intervention.

Source: American Psychological Association

Explore further: Shaming overweight kids only makes things worse

Related Stories

Shaming overweight kids only makes things worse

November 20, 2017
(HealthDay)—Overweight kids who are shamed or stigmatized are more likely to binge eat or isolate themselves than to make positive changes such as losing weight, a leading pediatricians' group says.

Researchers link Western diet to vascular damage and prediabetes

October 31, 2017
Could short-term exposure to the average American diet increase one's risk for developing diabetes and cardiovascular disease? According to a recent study funded by the American Heart Association (AHA), researchers from New ...

Burger robots to appear at 50 locations

September 16, 2017
(Tech Xplore)—We have been treated to a generous amount of stories announcing new advances in assembly-line robots and home-assistant robots. Smartened up with cameras and artificial intelligence, it looks like time to ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

Obesity is about much more than an unhealthy lifestyle

September 22, 2017
Despite an abundance of evidence illustrating that weight gain is caused by a complex cocktail of factors, obesity is often solely attributed to poor individual lifestyle choices – such as diet and exercise.

Study shows how 'love hormone' oxytocin spurs sociability

September 28, 2017
Why is it so much fun to hang out with our friends? Why are some people so sociable while others are loners or seemingly outright allergic to interactions with others?

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.