Breast cancer: How tumor cells break free and form metastases

July 4, 2008

When tumor cells acquire the capacity to move around and invade other tissues, there is a risk of metastases and cancer treatment becomes more difficult. At the Institut Curie, CNRS Director of Research Philippe Chavrier and his group have just discovered how breast cancer cells break the bonds that tether them to the tumor.

The basement membrane around the mammary gland is a barrier to the spread of cancer cells. Three proteins in the tumor cells transport enzymes needed to perforate this barrier, and another protein puts these enzymes in the right place.

These discoveries, published in the 16 June 2008 issue of The Journal of Cell Biology and in Current Biology on 8 July 2008, shed light on the early mechanisms of the formation of metastases in certain breast cancers. These findings constitute an essential step in the quest for the early identification of highly invasive tumors, or even the blocking of formation of metastases.

Tissues are generally formed by cells arranged side by side. Epithelial cells cover an outer surface, such as the skin or an organ such as the mammary gland, and remain tightly bound together. This cohesion is vital to the body’s functioning, and the epithelial cells remain in position in their original tissue until they die. Sometimes, though, they detach and move away, and while such migration is essential during embryonic development as cells give rise to new tissues, when tumor cells break loose this often heralds the formation of metastases.

When tumor cells break loose

Tumor cells accumulate errors, become totally anarchic, and flout all the rules. Some even become detached from the tumor through complex and poorly understood mechanisms. The Membrane and Cytoskeleton Dynamics Group headed by Philippe Chavrier (UMR 144 CNRS/Institut Curie) has now shed new light on the way cells, in this case breast cancer cells, escape their shackles. The mammary gland is separated from the neighboring tissue by the basement membrane, which the tumor cells will have to cross before continuing on their way.

The cell first forms protrusions called invadopodia and anchors them in the basement membrane. These “feet” provide everything needed to breach the membrane. The tumor cells produce a whole range of proteases that degrade the proteins of the extracellular matrix that hems them in, part of which is the basement membrane. These proteases cut a hole in the basement membrane through which the cells can escape.

In a first publication, the researchers used a model of metastatic breast cancer cells to show that the proteins sec3, sec8 and IQGAP1 transport vesicles containing proteases to the invadopodia. Without sec3, sec8 and IQGAP1 the vesicles cannot be fastened to the ends of the invadopodia and so the cells fail to escape into the neighboring tissue. Before the proteases can degrade the membrane, they must first be released from the vesicles.

In a second publication, Philippe Chavrier and colleagues show that the protein Vamp7 fuses protease-containing vesicles with the membrane of tumor cells. Only then can the proteases at the ends of the invadopodia progressively erode the basement membrane of the mammary gland. Inactivation of Vamp7 greatly reduces the ability of the breast cancer cells to degrade the extracellular matrix.

So tumor cells can only escape from the mammary gland by accomplishing a whole series of modifications. Philippe Chavrier and his group have shown how they hijack cellular mechanisms to leave their original tissue, after which they can spread throughout the body and form metastases.

These discoveries may help to explain why certain breast cancers are more aggressive than others, or even to identify highly invasive tumors at an early stage. It is also conceivable that tumor invasion could be blocked by acting on the underlying mechanisms identified by Philippe Chavrier and colleagues.

Source: Institut Curie

Explore further: Synthetic macromolecules kill multidrug-resistant cancer cells

Related Stories

Synthetic macromolecules kill multidrug-resistant cancer cells

March 15, 2018
Cancer continues to be a deadly threat to more than 14 million people who are diagnosed each year around the world. At the same time, five-year survival rates have been steadily improving over the last three decades to nearly ...

Researchers use single-cell imaging and mathematical modeling to determine effective drug properties

March 13, 2018
Drug therapies that target a specific molecule have changed the way patients are treated for cancer and greatly improved survival rates. However, some patients do not respond to these therapies because the drug is not reaching ...

Extracellular vesicles could be personalized drug delivery vehicles

March 12, 2018
Creating enough nanovesicles to inexpensively serve as a drug delivery system may be as simple as putting the cells through a sieve, according to an international team of researchers who used mouse autologous—their own—immune ...

Preclinical characterization of therapeutic antibodies

March 12, 2018
Even though the Shh pathway is mainly quiescent in adults, the safety of Shh-targeting with therapeutic antibodies was questioned initially because not only does the N-terminus of the Shh protein play an important role in ...

Zika virus could help combat brain cancer

February 22, 2018
Zika virus, known for causing microcephaly in babies by attacking the cells that give rise to the fetus's cerebral cortex, could be an alternative for treatment of glioblastoma, the most common and aggressive malignant brain ...

Why basal cell tumors return when drug treatment stops

February 1, 2018
What happens when the most common and least threatening type of cancer gets complicated?

Recommended for you

Cancer comes back all jacked up on stem cells

March 19, 2018
After a biopsy or surgery, doctors often get a molecular snapshot of a patient's tumor. This snapshot is important - knowing the genetics that cause a cancer can help match a patient with a genetically-targeted treatment. ...

A small, daily dose of Viagra may reduce colorectal cancer risk

March 19, 2018
A small, daily dose of Viagra significantly reduces colorectal cancer risk in an animal model that is genetically predetermined to have the third leading cause of cancer death, scientists report.

Researchers create a drug to extend the lives of men with prostate cancer

March 16, 2018
Fifteen years ago, Michael Jung was already an eminent scientist when his wife asked him a question that would change his career, and extend the lives of many men with a particularly lethal form of prostate cancer.

Machine-learning algorithm used to identify specific types of brain tumors

March 15, 2018
An international team of researchers has used methylation fingerprinting data as input to a machine-learning algorithm to identify different types of brain tumors. In their paper published in the journal Nature, the team ...

Higher doses of radiation don't improve survival in prostate cancer

March 15, 2018
A new study shows that higher doses of radiation do not improve survival for many patients with prostate cancer, compared with the standard radiation treatment. The analysis, which included 104 radiation therapy oncology ...

Joint supplement speeds melanoma cell growth

March 15, 2018
Chondroitin sulfate, a dietary supplement taken to strengthen joints, can speed the growth of a type of melanoma, according to experiments conducted in cell culture and mouse models.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.