New blood test for Down syndrome

October 7, 2008,

Howard Hughes Medical Institute researchers have developed a new prenatal blood test that accurately detected Down syndrome and two other serious chromosomal defects in a small study of 18 pregnant women. If confirmed in larger trials, they say, the test would offer a safer and faster alternative to invasive prenatal tests such as amniocentesis that pose a small risk of miscarriage.

Researchers have long known that a pregnant woman's blood contains small amounts of DNA from the fetus. Howard Hughes Medical Institute researcher Stephen R. Quake and colleagues at Stanford University devised an ingenious way to the scan fetal DNA present in the mother's blood to determine whether the fetus' cells contain extra chromosomes associated with several types of severe birth detects.

The test developed by Quake's team was more accurate than techniques used in previous efforts to diagnose aneuploidy by analyzing fetal DNA. Aneuploidy occurs when there are either too many or too few chromosomes in cells. Down syndrome, for example, is caused by a trisomy -- three copies instead of two -- of chromosome 21.

"We believe this is the first demonstration of a universal, noninvasive test for Down and other aneuploidies," said Quake, senior author of the research article, which was published online in the early edition of the Proceedings of the National Academy of Sciences (PNAS) on October 6, 2008. "We need a larger clinical study to understand a bit more about the best way to implement it, but I am highly optimistic it will be used as a diagnostic test in short order."

Amniocentesis and chorionic villus sampling (CVS), which are currently considered the "gold standard" in prenatal testing, involve sampling cells in amniotic fluid. Those cells are obtained by inserting a needle into the mother's uterus. The procedure carries up to a one percent risk of inducing a miscarriage. For that reason, routine use of these invasive diagnostic tests has largely been limited to women age 35 and older, where the age-related risk of fetal aneuploidy outweighs the risk of miscarriage. As a result, more infants with chromosomal defects are now being born to younger women. Researchers have been working for years to devise noninvasive screening tests that would be safe for that group of women.

In addition, it takes two or three weeks following the amniocentesis or CVS procedures to culture the cells and study the chromosomes. That amount of time can seem like an eternity for anxious parents waiting for the test results, Quake said.

With the new test, scientists only need to draw a small amount of blood from the woman. The blood is analyzed and the results are available within a couple of days, said Quake, who is a bioengineer at Stanford.

Quake's interest in developing new technology to diagnose aneuploidies was sparked when he read a research article published in the journal Science in 2005. That article discussed new methods of noninvasive prenatal testing that relied on measurements of DNA in fetal cells present in the mother's blood. The report said that the low prevalence of fetal cells – only about one in one million maternal cells – made it difficult to isolate enough fetal cells to test for chromosomal abnormalities.

At the time, some researchers were trying to isolate fetal "cell-free DNA" from the mother's blood. Cell-free DNA is fragmented double-stranded DNA that is in the debris of dying fetal cells. Isolating this DNA was a good idea, Quake said, but recovering the vanishingly small amount of fetal cell-free DNA remained a challenge.

After reading the Science article, Quake thought to himself, 'A lot of my work is about counting molecules; this is one problem I know how to do.' He had a brainstorm: Where other researchers were developing various ways of amplify the fetal DNA signal to distinguish it from maternal DNA, Quake proposed a bold shortcut – skipping that step entirely. After all, he observed, the point of screening was to spot extra chromosomes in the woman's blood sample. Whether the DNA being scanned was from the fetus or from the mother didn't matter. The objective, therefore, was simply to measure the amount of DNA in fragments mapped to the different chromosomes.

Conveniently, the cell-free DNA floating in the mother's blood circulation normally exists in short pieces, averaging 169 nucleotides in length. Quake proposed a "shotgun sequencing" strategy where he would use the very latest high-throughput gene sequencing technology and equally powerful computers to identify millions of unique sequence "tags" in the fetal DNA. Each of these tags was a 25 base-pair fragment of DNA. After the tags were identified, Quake's group could then map them to specific locations on the 23 pairs of chromosomes. By using this strategy, the researchers believed they could detect higher-than normal amounts of DNA belonging to the three chromosomes involved in the most common aneuploidies -- chromosomes 21, 18, and 13.

In the experiments reported in PNAS, Quake and his colleagues, including first author H. Christina Fan, a graduate student in bioengineering at Stanford, used their new technique to analyze DNA in blood samples from 18 pregnant women who were undergoing invasive prenatal testing (and one man, for reference).

When the amounts of DNA corresponding to each chromosome were plotted on a graph, significant, above-normal peaks appeared when a chromosome was present in three copies instead of two. These signals enabled the scientists to correctly identify the 12 women who carried aneuploid fetuses and the six whose pregnancies were normal. Their results matched those of amniocentesis or CVS test that were done on the women.

Quake said the shotgun-sequencing system is not only safer than invasive techniques but can also make a determination at an earlier gestational age, around 12 weeks.

The earlier the couple knows the status of the pregnancy, Quake observed, the better they will be prepared for whatever decision they choose to make on the basis of the information.

Quake's group is now planning a follow-up study to evaluate the test in a larger group of patients. He estimates that the cost of the test during the next phase will be about $300, with DNA sequencing accounting for the majority of the overall cost.

Source: Howard Hughes Medical Institute

Explore further: New blood test identifies heart-transplant rejection earlier than biopsy can

Related Stories

New blood test identifies heart-transplant rejection earlier than biopsy can

June 18, 2014
Stanford University researchers have devised a noninvasive way to detect heart-transplant rejection weeks or months earlier than previously possible. The test, which relies on the detection of increasing amounts of the donor's ...

New prenatal blood tests can check fetal DNA, raising ethical questions

September 16, 2011
Soon a simple blood test will be able to tell newly pregnant women if they are carrying a child with Down syndrome - raising the prospect, and perhaps peril, of a world with fewer imperfections.

Survey of DNA fragments circulating in the blood suggests vast microbial diversity

August 23, 2017
A new survey of DNA fragments circulating in human blood suggests our bodies contain vastly more diverse microbes than anyone previously understood. What's more, the overwhelming majority of those microbes have never been ...

New method enables sequencing of fetal genomes using only maternal blood sample

July 4, 2012
Researchers at the Stanford University School of Medicine have for the first time sequenced the genome of an unborn baby using only a blood sample from the mother.

Monitoring RNA levels in blood yields dynamic picture of fetal development, disease

May 5, 2014
Recent research has shown that tiny fragments of DNA circulating in a person's blood can allow scientists to monitor cancer growth and even get a sneak peek into a developing fetus' gene sequences. But isolating and sequencing ...

Scientists think mysterious virus could be a signal of a weak immune system

November 21, 2013
More than 260,000 Americans are alive today thanks to transplant operations that have replaced their failing kidneys, hearts, lungs or livers with healthy organs donated by volunteers or accident victims.

Recommended for you

Too liberal use of oxygen increases risk of death in acutely ill adult patients

April 26, 2018
McMaster University researchers have found there is such a thing as too much oxygen for acutely ill adults.

The complicated biology of garlic

April 26, 2018
Researchers today generally agree that eating garlic, used for thousands of years to treat human disease, can reduce the risk of developing certain kinds of cancers, cardiovascular disease, and type 2 diabetes. Nevertheless, ...

CRISPR-based diagnostic SHERLOCK optimized for rapid use during viral outbreaks

April 26, 2018
In a paper published today in Science, researchers at Broad Institute of MIT and Harvard report a new tool that engineers the CRISPR-based diagnostic SHERLOCK for rapid outbreak response. The updates to SHERLOCK, which was ...

Noninvasive brain tumor biopsy on the horizon

April 26, 2018
Taking a biopsy of a brain tumor is a complicated and invasive surgical process, but a team of researchers at Washington University in St. Louis is developing a way that allows them to detect tumor biomarkers through a simple ...

Lab-on-a-chip delivers critical immunity data for vulnerable populations

April 25, 2018
For millions of displaced people around the world—many of them refugees, living in temporary shelters under crowded conditions—an outbreak of disease is devastating. Each year, the measles virus kills more than 134,000 ...

Want new medicines? You need fundamental research

April 25, 2018
Would we be wise to prioritize "shovel-ready" science over curiosity-driven, fundamental research programs? Would that set the stage for the discovery of more new medicines over the long term?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.