Scientists restore movement to paralyzed limbs through artificial brain-muscle connections

October 15, 2008

Researchers in a study funded by the National Institutes of Health have demonstrated for the first time that a direct artificial connection from the brain to muscles can restore voluntary movement in monkeys whose arms have been temporarily anesthetized. The results may have promising implications for the quarter of a million Americans affected by spinal cord injuries and thousands of others with paralyzing neurological diseases, although clinical applications are years away.

"This study demonstrates a novel approach to restoring movement through neuroprosthetic devices, one that would link a person's brain to the activation of individual muscles in a paralyzed limb to produce natural control and movements," said Joseph Pancrazio, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke (NINDS).

The research was conducted by Eberhard E. Fetz, Ph.D., professor of physiology and biophysics at the University of Washington in Seattle and an NINDS Javits awardee; Chet T. Moritz, Ph.D., a post-doctoral fellow funded by NINDS; and Steve I. Perlmutter, Ph.D., research associate professor. The results appear in the online Oct. 15 issue of Nature. The study was performed at the Washington National Primate Research Center, which is funded by NIH's National Center for Research Resources.

In the study, the researchers trained monkeys to control the activity of single nerve cells in the motor cortex, an area of the brain that controls voluntary movements. Neuronal activity was detected using a type of brain-computer interface. In this case, electrodes implanted in the motor cortex were connected via external circuitry to a computer. The neural activity led to movements of a cursor, as monkeys played a target practice game.

After each monkey mastered control of the cursor, the researchers temporarily paralyzed the monkey's wrist muscles using a local anesthetic to block nerve conduction. Next, the researchers converted the activity in the monkey's brain to electrical stimulation delivered to the paralyzed wrist muscles. The monkeys continued to play the target practice game—only now cursor movements were driven by actual wrist movements—demonstrating that they had regained the ability to control the otherwise paralyzed wrist.

The group's approach is one of several lines of current neuroprosthetic research. Some investigators are using brain-computer interfaces to record signals from multiple neurons and convert those signals to control a robotic limb. Other researchers have delivered artificial stimulation directly to paralyzed arm muscles in order to drive arm movement—a technique called functional electrical stimulation (FES). The Fetz study is the first to combine a brain-computer interface with real-time control of FES.

"A robotic arm would be better for someone whose physical arm has been lost or if the muscles have atrophied, but if you have an arm whose muscles can be stimulated, a person can learn to reactivate them with this technology," says Dr. Fetz.

Until now, brain-computer interfaces were designed to decode the activity of neurons known to be associated with movement of specific body parts. Here, the researchers discovered that any motor cortex cell, regardless of whether it had been previously associated with wrist movement, was capable of stimulating muscle activity. This finding greatly expands the potential number of neurons that could control signals for brain-computer interfaces and also illustrates the flexibility of the motor cortex.

"The cells don't have to have a preordained role in the movement. We can create a direct link between the cell and the motor output that the user can learn to control and optimize over time," says Dr. Fetz.

Dr. Fetz and his colleagues found that the monkeys' control over neuronal activity—and the resulting control over stimulation of their wrist muscles—improved significantly with practice. Practice time was limited by the duration of the nerve block. Comparing the monkeys' performance during an initial two-minute practice and a two-minute peak performance period, the scientists found the monkeys successfully hit the target three times more frequently and with less error during the peak performance. In the future, greater control could be gained by using implanted circuits to create long-lasting artificial connections, allowing more time for learning and optimizing control, Dr. Fetz says.

The researchers also found that the monkeys could achieve independent control of both the wrist flexor and extensor muscles.

"An important next step will be to increase the number of direct connections between cortical cells and muscles to control coordinated activation of muscles," says Dr. Fetz.

If researchers are able to establish a connection between the motor cortex and sites in the spinal cord below the injury, people with spinal injuries may be able to achieve coordinated movements.

Clinical applications are still probably at least a decade away, according to Dr. Fetz. Better methods for recording cortical neurons and for controlling multiple muscles must be developed, along with implantable circuitry that could be used reliably and safely, he says.

Source: National Institute of Neurological Disorders and Stroke

Explore further: Thinking beyond yourself can make you more open to healthy lifestyle choices

Related Stories

Thinking beyond yourself can make you more open to healthy lifestyle choices

September 17, 2018
Public health messages often tell people things they don't want to hear: Smokers should stop smoking. Sedentary people need to get moving. Trade your pizza and hot dogs for a salad with lean protein.

Circuit found for brain's statistical inference about motion

September 17, 2018
As the eye tracks a bird flying past, the muscles that pan the eyeballs to keep the target in focus set their pace not only on the speed they see, but also on a reasonable estimate of the speed they expect from having watched ...

Obesity alters airway muscle function, increases asthma risk

September 13, 2018
New research suggests that obesity changes how airway muscles function, increasing the risk of developing asthma. The study is published ahead of print in the American Journal of Physiology—Lung Cellular and Molecular Physiology.

Heart attack: Substitute muscle thanks to stem cells

September 12, 2018
Myocardial infarction – commonly known as a heart attack – is still one of the main causes of death. According to the Federal Statistical Office, more than 49,00 people died of its consequences. And yet the mortality ...

Researchers trying to fathom the causes of fibromyalgia

September 14, 2018
Fibromyalgia is something of a mystery. It can't be detected with scans or blood tests, yet it causes lifelong pain for millions of people.

Researcher creates hydrogels capable of complex movement

September 13, 2018
Living organisms expand and contract soft tissues to achieve complex, 3-D movements and functions, but replicating those movements with man-made materials has proven challenging.

Recommended for you

Synthetic sandalwood found to prolong human hair growth

September 19, 2018
A team of researchers led by Ralf Paus of the University of Manchester has found that applying sandalwood to the scalp can prolong human hair growth. In their paper published in the journal Nature Communications, the group ...

Zombie cells found in brains of mice prior to cognitive loss

September 19, 2018
Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, ...

Separated entry and exit doors for calcium keep energy production smooth in the powerhouses of heart cells

September 18, 2018
Stress demands the heart to work harder and faster. To keep pace, the muscle must make its fuel at an accelerated rate. Bursts of calcium entering mitochondria—the cell's powerhouses—normally help control energy output, ...

First gut bacteria may have lasting effect on ability to fight chronic diseases

September 18, 2018
New research showing that the first bacteria introduced into the gut have a lasting impact may one day allow science to adjust microbiomes—the one-of-a-kind microbial communities that live in our gastrointestinal tracts—to ...

A new defender for your sense of smell

September 18, 2018
New research from the Monell Center increases understanding of a mysterious sensory cell located in the olfactory epithelium, the patch of nasal tissue that contains odor-detecting olfactory receptor cells. The findings suggest ...

Small molecule plays big role in weaker bones as we age

September 18, 2018
With age, expression of a small molecule that can silence others goes way up while a key signaling molecule that helps stem cells make healthy bone goes down, scientists report.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.