A natural approach for HIV vaccine

March 15, 2009

(PhysOrg.com) -- For 25 years, researchers have tried and failed to develop an HIV vaccine, primarily by focusing on a small number of engineered "super antibodies" to fend off the virus before it takes hold. So far, these magic bullet antibodies have proved impossible to produce in people. Now, in research to be published March 15 online by Nature, scientists at The Rockefeller University have laid out a new approach. They have identified a diverse team of antibodies in "slow-progressing" HIV patients whose coordinated pack hunting knocks down the virus just as well as their super-antibody cousins fighting solo.

By showcasing the dynamic, natural in these exceptional patients, the research, led by Michel C. Nussenzweig, Sherman Fairchild Professor and head of the Laboratory of , suggests that an effective may come from a shotgun approach using of a wide range of natural rather than an engineered .

"We wanted to try something different, so we tried to reproduce what's in the patient. And what's in the patient is many different that individually have limited neutralizing abilities but together are quite powerful," says Nussenzweig, who also is a Howard Hughes Medical Institute investigator. "This should make people think about what an effective vaccine should look like."

strains mutate rapidly, making them especially wily adversaries of the immune system. But one element is shared almost universally among the diverging strains — a protein on the envelope of the called gp140 that HIV needs to infect . Prior research has shown that four randomly engineered antibodies that block the activity of that protein prevent the virus from infecting immune cells in culture, but all attempts to coax the human body into producing those four have failed.

So Johannes Scheid, a visiting student in Nussenzweig's lab who is now a doctoral candidate, turned his attention to the antibodies produced by six people infected with HIV whose immune systems put up an exceptionally strong fight. The patients represent the roughly 10 to 20 percent of HIV patients who are able to control the virus and are very slow to progress to disease. Their immune systems' memory B cells produce high levels of antivirus antibodies, but until now, researchers have known little about the antibodies or how effective they are.

With help from Rockefeller's Center for Clinical and Translational Science and Rockefeller scientists David D. Ho and Jeffrey V. Ravetch, Scheid and colleagues isolated 433 antibodies from these individuals' blood serum that specifically targeted the — the chink in HIV's protean armor. He cloned the antibodies and produced them in bulk, mapped which part of the envelope protein each targeted, and gauged how effective each was in neutralizing the virus. In the process, he identified a new structure within the envelope protein — called the gp120 core — that had never been recognized as a potential target for antibodies. "It's the first time that anyone has defined what is really happening in the B cell response in these patients," says Scheid.

Scheid's work shows that it's common for these antibodies to have neutralizing activity, says Nussenzweig. But each antibody alone has limited ability to fight the virus. "Individually, they're not as strong as the Famous Four," says Nussenzweig, referring to the high-profile super antibodies on which several vaccine attempts have been based. But in high concentrations, a combination of the sets of antibodies cloned from the individual patients seemed to act as teams to knock down the virus in cell culture as well as any single antibody studied to date. These natural antibodies were also able to recognize a range of HIV strains, indicating that their diversity may be an advantage over a single super antibody that focuses on only one part of the virus, which can mutate. The findings suggest that research into vaccines that mimic this natural antibody response could pay off.

Source: Rockefeller University (news : web)

Related Stories

Recommended for you

Discovery of how HIV hedges its bets opens the door to new therapies

May 10, 2018
A stem cell is one with infinite possibilities. So, for decades, scientists have puzzled over how the cell chooses to keep being a stem cell and continue dividing, or specialize into a specific cell type, like a heart or ...

Researchers find link between crystal methamphetamine and immune changes in HIV

May 4, 2018
A researcher at the University of Miami Miller School of Medicine has found that the use of stimulants, such as methamphetamine, can negatively affect the health of HIV-positive persons even when they are adhering to medical ...

Study challenges 'shock and kill' approach to eliminating HIV

May 1, 2018
Researchers have provided new insight into the cellular processes behind the 'shock and kill' approach to curing HIV, which they say challenges the effectiveness of the treatment.

State-of-the-art HIV drug could curb HIV transmission, improve survival in India

April 30, 2018
An HIV treatment regimen already widely used in North America and Europe would likely increase the life expectancy of people living with HIV in India by nearly three years and reduce the number of new HIV infections by 23 ...

Risks to babies of mothers with HIV from three antiretroviral regimens appear to be low

April 25, 2018
The risk for preterm birth and early infant death is similar for three antiretroviral drug regimens taken by pregnant women with HIV according to a new study from Harvard T.H. Chan School of Public Health.

New method allows scientists to study how HIV persists

April 24, 2018
After 35 years of rigorous research, there is still no cure for HIV. Current drugs can be used to halt the infection, but fall short of reaching hidden reserves of dormant virus that can lurk for life within infected white ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.