Researchers find possible way to block the spread of deadly brain tumors

April 17, 2009

Researchers at the Translational Genomics Research Institute (TGen) may have found a way to stop the often-rapid spread of deadly brain tumors.

A gene with the playful-sounding name NHERF-1 may be a serious target for drugs that could prevent malignant tumors from rapidly multiplying and invading other parts of the brain, according to a cover story in this month's edition of Neoplasia, an international journal of cancer research.

Cancer cell movement and rapid division are key characteristics of malignant known as glioblastoma multiforme, or GBM.

Dr. Michael Berens, Director of TGen's Cancer and Cell Biology Division, said the recent findings are a major step toward devising a treatment for GBM, which because of its ability to rapidly grow within the brain often means patients have little time to survive.

"Controlling the actions of by regulating NHERF-1 implicates it as a possible therapeutic target for treating brain cancer," said Dr. Kerri Kislin, a scientist in TGen's Cancer and Cell Biology Division.

"Our findings suggest a novel mechanism defining NHERF-1 as a 'molecular switch' that regulates the GBM tumor cell's ability to migrate or divide,'' said Dr. Kislin, the scientific paper's lead author.

Dr. Berens, the paper's senior author, said the advances made by TGen not only confirm NHERF-1 as a gene associated with brain tumors, but also pinpoint it as a possible cause for their rapid growth and spread of GBM.

"Dr. Kislin's work has meant a fast maturation of NHERF-1 from a candidate gene associated with glioma invasion to positioning it as having a verified role in contributing to the malignant behavior of the disease," Dr. Berens said.

TGen scientists are scheduled to present their findings at the 100th annual meeting of the American Association for Cancer Research, April 18-22 in Denver.

Glioblastomas are essentially incurable tumors, in part, because there is no way to remove them surgically and ensure that all of the invading tumor cells are gone, even when surgery is followed by radiation treatments and conventional anti-cancer drugs.

"A chemotherapeutic treatment which targets these migrating cells would therefore have significant ramifications on patient survival," said Dr. Jennifer M. Eschbacher, a Neuropathology Fellow at Barrow Neurological Institute, who examined tumors for the study.

"As a pathologist, I examined expression of NHERF-1 under the microscope in tumor sections, including both invading edges of tumor and cellular tumor cores. We found NHERF-1 to be robustly expressed by invading tumors cells, when compared to tumor cores, suggesting that this factor plays a significant role in tumor invasion,'' Dr. Eschbacher said.

In the study, depletion of NHERF-1 stopped the migration of glioma - - cells, she said. "These results suggest that NHERF-1 plays an important role in tumor biology, and that targeted inhibition of this factor may have significant effects on patient treatment and survival.''

Source: The Translational Genomics Research Institute

Related Stories

Recommended for you

Researchers identify gene variants linked to a high-risk children's cancer

September 25, 2017
Pediatric researchers investigating the childhood cancer neuroblastoma have identified common gene variants that raise the risk of an aggressive form of that disease. The discovery may assist doctors in better diagnosing ...

Prostaglandin E1 inhibits leukemia stem cells

September 25, 2017
Two drugs, already approved for safe use in people, may be able to improve therapy for chronic myeloid leukemia (CML), a blood cancer that affects myeloid cells, according to results from a University of Iowa study in mice.

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Cancer vaccines need to target T cells that can persist in the long fight against cancer

September 25, 2017
Cancer vaccines may need to better target T cells that can hold up to the long fight against cancer, scientists report.

Lung cancer treatment could be having negative health effect on hearts

September 25, 2017
Radiotherapy treatment for lung cancer could have a negative effect on the health of your heart new research has found.

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.