Gene regulates immune cells' ability to harm the body

July 17, 2009

A recently identified gene allows immune cells to start the self-destructive processes thought to underlie autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis, researchers at Washington University School of Medicine in St. Louis have found.

Researchers showed that mice without the Batf gene lacked a type of inflammatory immune cell and were resistant to a procedure that normally induces an autoimmune condition similar to human MS. They plan to look for other genes and proteins influenced by Batf that could be targets for new treatments for .

"Batf allows to head down a pathway that's been a very hot topic in immunology because of its potential links to autoimmune disease," says senior author Kenneth Murphy, M.D., Ph.D., professor of pathology and immunology and a Howard Hughes Medical Institute investigator. "We showed that Batf regulates the only other gene previously revealed to control this pathway, so Batf may have quite a bit to teach us about autoimmunity."

The findings appear in Nature on July 16.

Lead author Barbara Schraml, Ph.D., found that the loss of Batf affected immune cells known as . Normally T cells take on specialized roles, becoming cells that promote various defensive responses or that recruit inflammatory cells to sites of infection. In mice without Batf, though, one of those roles was blocked: the mice had no inflammatory Th17 cells.

Researchers including Murphy first identified the Th17 pathway four years ago. While such cells help defend the body from bacterial infections, scientists have found that IL17, an inflammatory compound made by Th17 cells, is frequently present at sites of active autoimmune disease.

"Th17 cells draw in other immune cells to the site," Murphy says. "It makes the Th17 cell a bit like the instigator of an autoimmune riot—lots of cells rush in, and harmful things can start to happen."

Batf is a transcription factor, which means that the protein made from the gene acts to turn the production of proteins from other genes on and off. Its only previously identified role was as a partner with another common transcription factor.

Schraml showed that Batf had to be present for Th17 cells to make ROR-gamma-T, the only other gene known to force T cells to become Th17 cells. She also found that the presence of Batf made it possible for T cells to make more IL17.

"Normally transcription factors do not make ideal drug targets, but our Batf-knockout mice provide a unique tool to find the other proteins that are important in the development of Th17 cells," says Murphy. "Those proteins could be good targets for treatments for autoimmune diseases."

More information: Schraml BU, Hildner K, Ise W, Lee W-L, Smith WA-E, Solomon B, Sahota G, Sim J, Mukasa R, Cemerski S, Hatton RD, Stormo GD, Weaver CT, Russell JH, Murphy TL, Murphy KM. The AP-1 transcription factor Batf controls TH17 differentiation. Nature, July 16, 2009.

Source: Washington University School of Medicine (news : web)

Related Stories

Recommended for you

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.