Scientists find genetic marker associated with ovarian cancer risk

September 1, 2009

A new genetic marker associated with ovarian cancer risk was recently discovered by an international research group, led by scientists from the Cancer Research Genetic Epidemiology Unit in the United Kingdom. Drs. Marc Goodman, Galina Lurie, Michael Carney, and Keith Terada of the University of Hawai'i at Mānoa's Cancer Research Center of Hawai'i participated in the validation of the discovered genetic marker as a part of the Ovarian Cancer Association Consortium, a worldwide forum of scientists performing ovarian cancer research.

"The discovery represents not only a triumph of team science, but also a fulfillment of the vision of the Research Fund and its donors," says Dr. Andrew Berchuck at Duke University, chair of the consortium.

Over the last six years, the consortium has been supported by generous donations from the family and friends of Kathryn Sladek Smith in the New York area. The results of this work appeared in the July 2, 2009 issue of Nature Genetics.

Ovarian cancer is the eighth most common cancer and the fifth leading cause of cancer death among women in the United States. The five-year relative survival rates are currently 93 percent for localized disease, 71 percent for regional disease, and 31 percent for distant disease. However, only 25 percent of women with ovarian carcinoma are diagnosed at a localized stage mostly because symptoms are vague and a reliable screening method for early detection has not been established.

Ovarian cancer is already known to be linked to the variations in the breast cancer genes, BRCA1 and BRCA2. But these variations are rare, and alone they account for less than five percent of all cases of ovarian cancer. It is likely that the remaining risk is due to a combination of several unidentified genes that individually carry a low to moderate risk of the disease.

The study used a genome-wide association design in which the frequencies of hundreds of thousands of genetic variations across the genome are compared between large numbers of cases and unaffected controls. Overall more than 20,000 women participated in this study.

In the first stage, more than 620,000 genetic variations were analyzed in the whole genome of 1,817 women with ovarian cancer and compared to 2,353 women without the disease. Through the Ovarian Cancer Association Consortium, the most promising markers were subsequently investigated among an additional 7,922 women with ovarian cancer and 10,577 women without disease.

The new marker was found on chromosome 9, close to the BNC2 (basonuclin 2) gene that encodes a protein which plays a role in regulation of DNA transcription and is highly expressed in reproductive tissues. This marker is present among 32% of and contributes an estimated 0.7% to ovarian cancer risk.The association of this marker with risk was stronger for serous carcinoma, the most common (and most lethal) ovarian cancer subtype.

Source: University of Hawaii at Manoa

Related Stories

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.