Stem cells offer new hope for kidney disease patients

October 15, 2009
Stem cells offer new hope for kidney disease patients
This is Valerie LeBleu, Ph.D., and Raghu Kalluri, M.D., Ph.D., of the American Society of Nephrology. Credit: none

Several cell-based therapy approaches could provide new treatments for patients with Alport syndrome, reports an upcoming paper in the Journal of the American Society of Nephrology (JASN). "Our study opens up many considerations of how new therapies related to the use of stem cells can be devised for our kidney patients with chronic disease," comments Raghu Kalluri, MD, PhD (Harvard Medical School, Boston, MA).

Led by Valerie LeBleu, PhD (also of Harvard Medical School), the researchers tested various types of cell-based therapy in mice with a gene defect similar to that causing Alport syndrome, a genetic kidney disease. Most often occurring in boys, Alport syndrome causes progressive kidney disease leading to kidney failure at a young age. Patients may develop hearing loss and eye disease as well. Although treatment can slow the progression of kidney disease, there is currently no cure for Alport syndrome.

The experiments provide evidence that stem cell treatments could repair the kidney defects associated with Alport syndrome. "We found that stem cells derived from adult bone marrow are equally useful as embryonic ," says Kalluri. "This will make it easier to translate these scientific discoveries to a treatment protocol for patients with Alport syndrome."

Transplantation of bone marrow from unaffected animals significantly improved kidney function in mice in the late stages of disease. Importantly, the results suggested that the beneficial effects of may be achieved without the need for radiation.

Simple blood transfusion from healthy mice also achieved dramatic improvements in kidney function and survival in the mice with end-stage kidney disease. " transplant and protocols have already been approved for previous clinical use in patients with end-stage and Alport syndrome," says Kalluri. "Therefore, clinical application of this procedure is quite feasible and may help our patients immediately." Although the results in mice are promising, real effectiveness can only be tested in human clinical trials. Kalluri adds, "Our study is an important step towards that goal."

More information: "Stem Cell Therapies Benefit Alport Syndrome," doi 10.1681/ASN.2009010123

Source: American Society of Nephrology (news : web)

Related Stories

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.