Gladstone scientists identify role of key protein in ALS and frontotemporal dementia

January 12, 2010, Gladstone Institutes

Scientists at the Gladstone Institute of Neurological Disease (GIND) have identified the reason a key protein plays a major role in two neurodegenerative diseases. In the current edition of the Journal of Neuroscience, researchers in the laboratory of GIND Associate Director Steven Finkbeiner, MD, PhD have found how the protein TDP-43 may cause the neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusion bodies (FTLDu). TDP-43, is the major component of protein aggregates in patients with these diseases. Mutations in the TDP-43 gene are also associated with familial forms of ALS and FTLDu.

"TDP-43 is a very exciting protein. We found that its location in the cell is a good indicator of the damage it may cause," said Finkbeiner, senior investigator and senior author on the study. "Our findings and our experimental model will allow further studies of this protein and how it results in disease."

Under normal circumstances, TDP-43 is a common protein that stays mostly in the nucleus. It has several beneficial functions, including binding DNA and RNA, inhibiting retroviruses, and helping with and nuclear body formation. It also shuttles mRNA to the .

However, in patients with ALS and FTLDu, TDP-43 is redistributed from the nucleus to the cytoplasm and forms insoluble TDP-43 aggregates in the nucleus, cytoplasm, or neuronal processes.

The Finkbeiner team developed a model system to find out how TDP-43 might be involved in . They used genetic engineering to add a fluorescent tag to normal or wildtype and mutant TDP-43 in rat neurons. The tag allowed them to easily see the intracellular location of the protein.

To determine the effects of the , the researchers used an automated microscope that can examine hundreds of thousands of neurons individually over several days. With this large amount of data, they could use sophisticated statistical analyses to follow the fate of each individual neuron and determine its risk of death at any given time.

Their experimental system used primary neurons. These neurons are taken directly from an animal to a culture dish and provide the best cells for experiments because they retain many of the features of cells in the intact brain. In fact, Dr. Finkbeiner's system showed many "normal" features of TDP-43 in neurons. For example, wildtype TDP-43 was found in the nucleus in healthy neurons. Mutant TDP-43 was also found in the nucleus, but there was more of the protein in the cytoplasm.

Several neurons developed aggregates of the protein called inclusion bodies, which are often found in diseased neurons. In addition, the system can be easily manipulated by the investigators, making it a valuable tool for dissecting the biological mechanisms underlying diseases associated with TDP-43 deposition.

"We expect this system to be very helpful to other investigators," explained Finkbeiner.

The researchers found that the mutant TDP-43 was toxic to and that more of it was found in the cytoplasm. Although the mutant protein formed inclusion bodies, these did not affect the risk of cell death. However, the amount of cytoplasmic TDP-43 was a strong and independent predictor of neuronal death. Using genetic manipulations, they showed that targeting wild-type TDP-43 to the cytoplasm is sufficient to recreate the toxicity associated with mutant TDP43. On the other hand, the toxic effect of the mutant protein could be blunted by preventing its export from the nucleus. It seems as if the toxicity of the mutation depends on cytoplasmic mislocalization of TDP-43.

"Our results indicate that the mutant protein is mislocalized to the cytoplasm," Finkbeiner said. "Although we don't know the underlying mechanism, the seems to become toxic in the cytoplasm and then causes death of the neuron."

Related Stories

Recommended for you

MDMA makes people cooperative, but not gullible

November 19, 2018
New research from King's College London has found that MDMA, the main ingredient in ecstasy, causes people to cooperate better—but only with trustworthy people. In the first study to look in detail at how MDMA impacts cooperative ...

How the brain switches between different sets of rules

November 19, 2018
Cognitive flexibility—the brain's ability to switch between different rules or action plans depending on the context—is key to many of our everyday activities. For example, imagine you're driving on a highway at 65 miles ...

Mutation that causes autism and intellectual disability makes brain less flexible

November 19, 2018
About 1 percent of patients diagnosed with autism spectrum disorder and intellectual disability have a mutation in a gene called SETD5. Scientists have now discovered what happens on a molecular level when the gene is mutated ...

Signal peptides' novel role in glutamate receptor trafficking and neural synaptic activity

November 19, 2018
Glutamate is the major excitatory neurotransmitter in the brain, and the postsynaptic expression level of glutamate receptors is a critical factor in determining the efficiency of information transmission and the activity ...

Study explains behavioral reaction to painful experiences

November 19, 2018
Exposure to uncomfortable sensations elicits a wide range of appropriate and quick reactions, from reflexive withdrawal to more complex feelings and behaviors. To better understand the body's innate response to harmful activity, ...

Playing high school football changes the teenage brain

November 16, 2018
A single season of high school football may be enough to cause microscopic changes in the structure of the brain, according to a new study by researchers at the University of California, Berkeley, Duke University and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.