Therapeutic effect of worm-derived proteins on experimental colitis

March 4, 2010, World Journal of Gastroenterology

Worms are important source of immunomodulatory proteins that could be used in the development of new drugs for the treatment of immune-mediated diseases such as inflammatory bowel disease (IBD). A research group in Belgium investigated the therapeutic effect of worm-derived proteins on experimental colitis in mice. Treatment with worm proteins ameliorated motility disturbances during murine experimental colitis. This suggests that worm proteins have great potential to be used as therapeutic agents in IBD.

Patients with (IBD) suffer from of the gut leading to gastrointestinal motility alterations with symptoms such as abdominal pain, cramps and diarrhea that profoundly affect their quality of life. The lack of exposure to worm infections, as a result of improved living standards and medical conditions, might have contributed to the increased incidence of IBD in the Western world. Epidemiological, experimental and clinical data support the idea that worm infection provides protection against IBD. However, treatment of patients with living worms may have serious drawbacks such as infection and/or invasion of the parasite to other tissues. Therefore, therapy with worm-derived proteins might provide a more acceptable form of treatment.

A research article published on February 14, 2010 in the addresses this question. The research team led by Professor Pelckmans from the University of Antwerp used a of experimental colitis to study the beneficial therapeutic effect of worm-derived proteins on inflammation and gastrointestinal motility disturbances. This paper further enlightens the therapeutic effect of worm proteins on colitis by investigating the effect on the inflammatory process and on the motility disturbances. The results agree with previous studies showing a beneficial effect of worm infection on intestinal inflammation and of worm proteins in experimental animal models of asthma and type 1 diabetes.

The induction of colitis in mice causes severe gastrointestinal motility alterations such as increased intestinal transit time and abrogation of colonic peristaltic activity, as seen in IBD patients. This paper describes that treatment with worm proteins causes normalization of intestinal transit time and amelioration of colonic peristaltic activity in mice with colitis. Treatment of control animals with worm proteins did not influence gastrointestinal motility. Furthermore, attenuation of inflammation and amelioration of motility disturbances after treatment with worm proteins both appear at the same time. This raises the question whether the beneficial effect of worm proteins on gastrointestinal motility is directly or indirectly related to amelioration of inflammation.

In addition, the paper also reports a shift in the balance between different T lymphocyte subsets (Th1, Th2, Th17 and Treg) after the induction of colitis and treatment with worm proteins. The therapeutic effect of worm proteins appears to be mediated by an immunological pathway involving Th1, Th17 and Treg cells. Unraveling the interaction between the immune system and the nervous system will expand our knowledge on how worm proteins affect gastrointestinal motility. More research on this topic is eagerly awaited.

This study shows that treatment with worm proteins attenuates intestinal inflammation and normalizes gastrointestinal motility disturbances in mice with colitis. These results demonstrate that worm proteins, by influencing intestinal inflammation and the related symptoms during colitis, may provide an attractive option in the management of gastrointestinal inflammation in IBD patients.

More information: Ruyssers NE, De Winter BY, De Man JG, Ruyssers ND, Van Gils AJ, Loukas A, Pearson MS, Weinstock JV, Pelckmans PA, Moreels TG. Schistosoma mansoni proteins attenuate gastrointestinal motility disturbances during experimental colitis in mice. World J Gastroenterol 2010; 16(6): 703-712. www.wjgnet.com/1007-9327/16/703.asp

Related Stories

Recommended for you

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

Previous influenza virus exposures enhance susceptibility in another influenza pandemic

January 16, 2018
While past exposure to influenza A viruses often builds immunity to similar, and sometimes different, strains of the virus, Canadian researchers are calling for more attention to exceptions to that rule.

Don't hold your nose and close your mouth when you sneeze, doctors warn

January 15, 2018
Pinching your nose while clamping your mouth shut to contain a forceful sneeze isn't a good idea, warn doctors in the journal BMJ Case Reports.

Surfers three times more likely to have antibiotic-resistant bacteria in guts

January 14, 2018
Regular surfers and bodyboarders are three times more likely to have antibiotic resistant E. coli in their guts than non-surfers, new research has revealed.

New antifungal provides hope in fight against superbugs

January 12, 2018
Microscopic yeast have been wreaking havoc in hospitals around the world—creeping into catheters, ventilator tubes, and IV lines—and causing deadly invasive infection. One culprit species, Candida auris, is resistant ...

Dengue takes low and slow approach to replication

January 11, 2018
A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.