Astroglia reprogrammed to generate synapse-forming neurons

May 18, 2010, Helmholtz Zentrum Munchen

The research team led by Professor Magdalena Goetz of Helmholtz Zentrum Muenchen and Ludwig-Maximilians-Universitaet Munich, Germany, reports a major step forward in discovering a therapy for neurodegenerative diseases such as Alzheimer's or stroke. The researchers were able to convert glial cells of the brain into two different functional classes of neurons. The findings are published on May 18 in the renowned journal PLoS Biology.

In this study Magdalena Götz and her team showed how astroglia can be directly converted into the two main classes of cortical . This was made possible by the selective transduction of specific proteins - - which regulate the transcription of DNA. While the transcription factor neurogenin-2 directs the generation of excitatory neurons, the same astroglial cells yield inhibitory neurons after transduction of the transcription factor Dlx2.

Neurons are the cells in the brain which transmit information, while the astroglia (star-shaped glial cells) serve as a supportive scaffold and are involved in metabolism. Moreover, they are closely related to radial glial cells, which during embryonic forebrain development function as precursors for most neurons. In fact, some glial cells even in the adult brain retain the capability of producing neurons - however these are only found in specific regions.

It is still not known exactly what differentiates normal astroglia from radial glial cells with neurogenic potential. However, the researchers led by Magdalena Götz, director of the Institute of Stem Cell Research at Helmholtz Zentrum München and chair of Physiological Genomics at LMU, have already shown in previous studies that astroglia from the cerebral cortex of young mice, which are normally incapable of generating neurons, can be driven to convert into neurons by transducing special regulatory proteins.

"In this study we have succeeded in reprogramming the newly created neurons to the extent that they can now develop functioning synapses. These release - depending on the transcription factor used - either excitatory or inhibitory neurotransmitter substances," said Dr. Benedikt Berninger, lead author of the study. This process could not only be observed in young astroglia, but even in astroglia in the adult brain following tissue injury-induced reactivation. "Our findings nurture the hope that the barrier separating the astroglial and neuronal cells - closely related as they are - is not insurmountable," Dr. Berninger emphasized. Due to these encouraging results, the researchers intend to pursue this avenue further to gain new neurons from the glial cells present in the , in order to find therapies for such as Alzheimer's.

More information: Christophe Heinrich, Robert Blum, Sergio Gascón, Giacomo Masserdotti, Pratibha Tripathi, Rodrigo Sánchez, Steffen Tiedt, Timm Schroeder, Magdalena Götz, Benedikt Berninger. (2010): Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons. PLoS Biol 8 (5): e1000373. (doi:10.1371/journal.pbio.1000373)

Related Stories

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.