Neuron research could improve hearing loss restoration

May 4, 2010

(PhysOrg.com) -- New research into the way our brain uses neurons to enable us to perceive sound and understand speech could fundamentally improve the design of current surgical implants and so help restore hearing in patients with profound hearing loss.

The findings, published on Tuesday, 4 May in IOP Publishing’s , demonstrate that frequency specific electrical stimulation can be used to activate the temporal firing of neurons in the human , which are thought essential for many speech features.

At the moment deaf patients are fitted with one of two types of implants, a cochlear implant (CI) or an auditory brainstem implant (ABI). The latter type is used for those who have a damaged cochlear nucleus (the first auditory processing site within the brain) or auditory nerve (the nerve that connects the cochlea in the ear to the brain) due to meningitis, a tumor or the trauma suffered in a car crash.

Patients fitted with ABIs only have limited sound perception despite the implant and can typically only increase their in conjunction with lip reading.

The researchers from La Trobe University, Victoria, Australia, and the Bionic Ear Institute, Victoria, Australia headed by Associate Professor Paolini have been conducting research into ABIs for the last six years with research results showing it is theoretically possible for an ABI to compensate for the difference between normal and ABI temporal neural firing - the firing rate of a neuron and the precise temporal position of when it fires.

It is thought that the brain uses both firing rate and firing timing to pass on messages, meaning that implants which can activate both through electrical stimulation could vastly increase a patient’s ability to hear and understand speech.

The researchers write, “Understanding the auditory system’s temporal response to will aid in future ABI design and stimulation strategies.”

The next step is to build and test a new stimulation strategy for ABIs and for cochlear implants, which restores the brain’s temporal natural firing pattern.

With an increasing number of up to 1000 implantations of ABIs per year in patients with genetically conditioned tumor growth, and a growing number of other pathologies such as those born without an auditory nerve for example, better implant design will make a significant difference for patients otherwise facing substantial .

More information: Journal paper: iopscience.iop.org/1741-2552/7/3/036004

Related Stories

Recommended for you

Study uncovers specialized mouse neurons that play a unique role in pain

August 17, 2017
Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise ...

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.