Scientists implant regenerated lung tissue in rats (w/ Video)

June 24, 2010

A Yale University-led team of scientists reports that it has achieved an important first step in regenerating fully functional lung tissue that can exchange gas, which is the key role of the lungs. Their paper appears in the June 24 issue of Science Express.

Lung disease accounts for around 400,000 deaths each year in the United States. Lung tissue is difficult to regenerate because it does not generally repair or regenerate beyond the microscopic level. The only current way to replace damaged adult is to perform , which is highly susceptible to and infection and achieves only 10% to 20% survival at 10 years.

The Yale team's goal was to see if it was possible to successfully implant tissue-engineered lungs, cultured in vitro, that could serve the lung's primary function of exchanging oxygen and carbon dioxide. They took adult rat lungs and first removed their existing cellular components, preserving the extracellular matrix and hierarchical branching structures of the airways and vascular system to use later as scaffolds for the growth of new lung cells.

They then cultured a combination of lung-specific cells on the extracellular matrix, using a novel bioreactor designed to mimic some aspects of the fetal lung environment. Under the fetal-like conditions of the bioreactor, the cells repopulated the decellularized matrix with functional lung cells. When implanted into rats for short intervals of time (45-120 minutes), the engineered lungs exchanged oxygen and carbon dioxide similarly to natural lungs.

The video will load shortly.
This is a tutorial on how tissue-engineered rat lung is transplanted. Credit: Yale University, Yale School of Medicine

The video will load shortly.
This video shows how lung tissue is engineered. Credit: Yale University School of Medicine
Lead author Laura Niklason, M.D., Ph.D., professor and vice-chair of the Departments of Anesthesiology and Biomedical Engineering at Yale University and a member of Yale Medical Group, said, "We succeeded in engineering an implantable lung in our that could efficiently exchange oxygen and , and could oxygenate in the blood. This is an early step in the regeneration of entire lungs for larger animals and, eventually, for humans."

The team found that the mechanical characteristics of the engineered lungs were similar to those of native tissues and, when implanted, were capable of participating in gas exchange. "Seeded and cultured epithelium displays remarkable hierarchical organization within the lung matrix, while seeded endothelial cells efficiently repopulate the lung vasculature, Niklason said.

The Yale team says this is an important first step, but a great deal more research must be done to see if fully functional lungs can be regenerated in vitro, implanted and sustained in their functioning. Niklason says that for this technology to be applicable to patients, it is likely that years of research with adult stem cells will be needed to repopulate lung matrices and produce fully functional lungs.

More information: Citation: Science Express, June 24, 2010

Related Stories

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.