Adiposity hormone, leptin, regulates food intake by influencing learning and memory

July 13, 2010

Research to be presented at the Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, finds that the hormone leptin reduces food intake, in part, by activating the hippocampus, an area of the brain that controls learning and memory function. Leptin is a hormone released from fat cells that acts on the brain to inhibit feeding.

Researchers from the University of Pennsylvania found that when leptin was delivered directly to the in rats, the animals consumed less food and lost body weight. Leptin delivered to this region of the also impaired the ability of the animals to learn about the spatial location of food.

These findings highlight the need for future research aimed at identifying the role of cognitive processes in and body weight control. "Feeding is a complex behavior that is not always driven by hunger or need. An element of our research program is focused on understanding how learning and memory contribute to excessive food intake, and ultimately obesity," says Dr. Scott Kanoski, lead author. When fat stores are plentiful, humans and animals may be less focused on learning about cues that provide information about food location and availability.

According to Kanoski, "these findings suggest that the brain receives and responds to signals about body energy status, specifically the amount of body fat reserves, and in turn these signals influence what type of environmental cues we learn about. When leptin signaling is impaired, which is common in , cognitive processes that normally would help inhibit or decrease food intake may also be compromised."

Related Stories

Recommended for you

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.