Scientists Find a New Toxin That May be Key to MRSA Severity

July 17, 2010, National Institutes of Health

A research project to identify all the surface proteins of USA300—the most common community-associated strain of the methicillin-resistant form of the bacterium Staphylococcus aureus (MRSA)—has resulted in the identification and isolation of a plentiful new toxin that laboratory studies indicate is a potent killer of human immune cells.

Scientists at the National Institute of Allergy and , part of the National Institutes of Health, say the could be a key factor in the severity of MRSA infections in otherwise healthy people. The toxin, named LukGH, consists of two small proteins found on the surface of the and is secreted freely into the surrounding environment.

The scientists identified 113 proteins associated with the surface of USA300 and began to examine the role of the previously uncharacterized proteins. S. aureus surface proteins are key indicators of how the pathogen will respond to contact with , such as neutrophils, which the body produces in large numbers to kill invading microbes. Some proteins can aggressively attack these immune cells, and the demise of the neutrophils ultimately enables the bacteria to replicate and thrive. When the LukGH toxin was removed from USA300, studies showed that the strain caused little to no damage to human neutrophils. With the toxin present, the bacteria began forming pores in neutrophils which eventually led to their destruction.

The scientists say they do not know the full contribution of LukGH to the severity of MRSA infection. However, LukGH is the only MRSA toxin currently known to promote destruction of human neutrophils after the bacteria have been ingested by the immune cells designed to destroy them. Using animal models of MRSA infection, the NIH team is continuing to study the role of LukGH in disease.

More information: C Ventura et al. Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One DOI: 10.1371/journal.pone.0011634 (2010).

Related Stories

Recommended for you

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

Research discovers possible link between Crohn's and Parkinson's in Jewish population

January 11, 2018
Mount Sinai Researchers have just discovered that patients in the Ashkenazi Jewish population with Crohn's disease (a chronic inflammatory of the digestive system) are more likely to carry the LRRK2 gene mutation. This gene ...

Scientists use gene expression to understand how astrocytes change with age

January 11, 2018
Potentially explaining why even healthy brains don't function well with age, Salk researchers have discovered that genes that are switched on early in brain development to sever connections between neurons as the brain fine-tunes, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.