'Co-conspirator' cells could hold key to melanoma prediction, prevention

August 30, 2010, Oregon State University

New research on how skin cancer begins has identified adjacent cancer cells that scientists are calling "co-conspirators" in the genesis of melanoma, in findings that could someday hold the key to predicting, preventing and stopping this hard-to-treat cancer before it spreads.

Changes in the body's pigment-producing cells, where - the most dangerous form of - takes hold are only part of the story, according to a new study by researchers from Oregon State University.

Other skin cells in what's called the "microenvironment" of the cancer site also play a key role, scientists say.

"These adjacent cells, which are called keratinocytes, are actually the driver for the changes and malignant transformation in the pigment-producing cells, which are called melanocytes," said Arup Indra, an assistant professor in the OSU College of Pharmacy.

"So there are two avenues - the pigment-producing cells where the cancer develops, and the adjacent skin cells which 'talk to' the pigment-producing cells in the form of signals," Indra said. "They work in coordination, they are partners in crime."

Research was done with both animal models and human samples, from individuals who carry a mutation in a gene called Cdk4, which is an inherited predisposition to melanoma that has turned up in families in Norway, France, Australia and England.

The study found that a protein called RXR-alpha in skin keratinocytes appears to protect from damage, and prevent them from progressing to invasive melanoma.

This protein in skin cells sends to the adjacent pigment cells, Indra said. The study revealed that these signals can, in effect, prevent or block the abnormal proliferation of pigment-producing cells in laboratory mice. Conversely, when the protein was removed or repressed, melanoma cells became aggressive and invaded the animals' lymph nodes.

However, both the protective protein and pigment cells can suffer damage from chemical toxins or ultraviolet sunlight in the pigment cells, creating a "double-edged sword" in melanoma's complex etiology, according to Indra.

To study melanoma cells in isolation from their surrounding biochemical and molecular environment is to miss the intricate series of related interactions that give rise to the disease, he said.

The finding could lead to promising new prevention tools down the road, Indra said.

"Better understanding this process will help us design new and novel strategies for prevention and, possibly, a cure," Indra said. "This could be a predictive prognostic tool for discovering melanoma predisposition in humans. And that could lead to better and earlier diagnostics."

More information: This study was featured on the current cover of the journal Pigment Cell and Melanoma Research.

Related Stories

Recommended for you

New blood test detects early stage ovarian cancer

November 19, 2018
Research on a bacterial toxin first discovered in Adelaide has led to the development a new blood test for the early diagnosis of ovarian cancer—a disease which kills over 1000 Australian women and 150,000 globally each ...

New drug discovery could halt spread of brain cancer

November 19, 2018
The tissues in our bodies largely are made of fluid. It moves around cells and is essential to normal body function.

New dual-action cancer-killing virus

November 19, 2018
Scientists have equipped a virus that kills carcinoma cells with a protein so it can also target and kill adjacent cells that are tricked into shielding the cancer from the immune system.

From the ashes of a failed pain drug, a new therapeutic path emerges

November 16, 2018
In 2013, renowned Boston Children's Hospital pain researcher Clifford Woolf, MB, BCh, Ph.D., and chemist Kai Johnsson, Ph.D., his fellow co-founder at Quartet Medicine, believed they held the key to non-narcotic pain relief. ...

Repurposing FDA-approved drugs can help fight back breast cancer

November 16, 2018
Screening Food and Drug Administration (FDA)-approved compounds for their ability to stop cancer growth in the lab led to the finding that the drug flunarizine can slow down the growth of triple-negative breast cancer in ...

Traditional chemotherapy superior to new alternative for oropharyngeal cancers

November 16, 2018
A drug increasingly used in combination with radiotherapy to treat a type of cancer that forms in the tonsils or the base of the tongue is inferior to a previously favored option, according to a large, clinical trial led ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.