'Co-conspirator' cells could hold key to melanoma prediction, prevention

August 30, 2010, Oregon State University

New research on how skin cancer begins has identified adjacent cancer cells that scientists are calling "co-conspirators" in the genesis of melanoma, in findings that could someday hold the key to predicting, preventing and stopping this hard-to-treat cancer before it spreads.

Changes in the body's pigment-producing cells, where - the most dangerous form of - takes hold are only part of the story, according to a new study by researchers from Oregon State University.

Other skin cells in what's called the "microenvironment" of the cancer site also play a key role, scientists say.

"These adjacent cells, which are called keratinocytes, are actually the driver for the changes and malignant transformation in the pigment-producing cells, which are called melanocytes," said Arup Indra, an assistant professor in the OSU College of Pharmacy.

"So there are two avenues - the pigment-producing cells where the cancer develops, and the adjacent skin cells which 'talk to' the pigment-producing cells in the form of signals," Indra said. "They work in coordination, they are partners in crime."

Research was done with both animal models and human samples, from individuals who carry a mutation in a gene called Cdk4, which is an inherited predisposition to melanoma that has turned up in families in Norway, France, Australia and England.

The study found that a protein called RXR-alpha in skin keratinocytes appears to protect from damage, and prevent them from progressing to invasive melanoma.

This protein in skin cells sends to the adjacent pigment cells, Indra said. The study revealed that these signals can, in effect, prevent or block the abnormal proliferation of pigment-producing cells in laboratory mice. Conversely, when the protein was removed or repressed, melanoma cells became aggressive and invaded the animals' lymph nodes.

However, both the protective protein and pigment cells can suffer damage from chemical toxins or ultraviolet sunlight in the pigment cells, creating a "double-edged sword" in melanoma's complex etiology, according to Indra.

To study melanoma cells in isolation from their surrounding biochemical and molecular environment is to miss the intricate series of related interactions that give rise to the disease, he said.

The finding could lead to promising new prevention tools down the road, Indra said.

"Better understanding this process will help us design new and novel strategies for prevention and, possibly, a cure," Indra said. "This could be a predictive prognostic tool for discovering melanoma predisposition in humans. And that could lead to better and earlier diagnostics."

More information: This study was featured on the current cover of the journal Pigment Cell and Melanoma Research.

Related Stories

Recommended for you

Study finds melanoma biomarkers predicting checkpoint blocker response

July 18, 2018
Scientists at Dana-Farber/Brigham and Women's Cancer Center (DF/BWCC) have identified biomarkers in melanoma that could help tailor immunotherapy treatments to maximize the benefits for patients while reducing the likelihood ...

Link found between bitter-taste sensitivity and cancer risk

July 18, 2018
High bitter-taste sensitivity is associated with a significantly increased risk of cancer in older British women, according to researchers who conducted a unique study of 5,500 women whose diet, lifestyle and health has been ...

Scientists discover a mechanism of drug resistance in breast and ovarian cancer

July 18, 2018
There is a highly sophisticated way to treat some breast and ovarian cancers—a class of drugs called PARP inhibitors, designed to exploit the very defects that make tumors with certain mutations especially deadly. Yet this ...

Scientists develop 'world first' melanoma blood test

July 18, 2018
Australian researchers said Wednesday they have developed a blood test for melanoma in its early stages, calling it a "world first" breakthrough that could save many lives.

Research identifies new breast cancer therapeutic target

July 18, 2018
Research led by Suresh Alahari, Ph.D., Professor of Biochemistry and Molecular Biology at LSU Health New Orleans School of Medicine, has shown for the first time that a tiny piece of RNA deregulates energy metabolism, an ...

Cancer patients may experience delayed skin effects of anti-PD-1 therapy

July 18, 2018
Cancer patients receiving anti-PD-1 therapies who develop lesions, eczema, psoriasis, or other forms of auto-immune diseases affecting the skin may experience those adverse reactions on a delay—sometimes even after treatment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.