Targeting hit-and-run cancer viruses

August 18, 2010

Viruses that can invade host cells, initiate cancer and then flee from their own trail of destruction could be stopped in their tracks, say researchers writing in the September issue of the Journal of General Virology.

Scientists at the University of Cambridge have not only provided the first unequivocal evidence for the 'hit-and-run hypothesis' - explaining how some viruses might cause cancer and then mysteriously disappear - but have also shown how a vaccine could arrest them. Equivalent vaccines could help prevent not only known virus-induced human cancers, such as Burkitt's lymphoma, but also cancers currently unsuspected of having a viral origin.

The team experimented with a mouse herpesvirus - similar to the human Epstein-Barr virus that causes Burkitt's lymphoma. The virus was engineered to trigger oncogenic changes at high frequency in infected cells, leading to cancerous tumour growth. Surprisingly, the cancers soon lost any sign of their previous viral infection. The group went on to show that vaccinating the mice with a modified version of the same virus protected them against subsequent cancer development.

Drs. Philip Stevenson and Stacey Efstathiou, who led the study, explained how some viruses that establish 'latent' infections (enabling them to persist in host cells without activating the immune system), cannot necessarily maintain those infections in . This means they can initiate cancers or play a role in their development, but then can disappear from by the time the cancer is clinically detected.

They believe that immunisation against such viruses could be an effective and relatively simple means of preventing some cancers - much as vaccination is being used to protect women against caused by the (HPV).

However, the team's findings highlight that the link between viruses and cancer is not necessarily straightforward. "We have shown that some cancer-initiating viruses may subsequently leave the cell without trace, meaning that some viruses may contribute to more human cancers than suspected," said Dr Stevenson. "The positive side of this is that developing an effective vaccine against oncogenic herpesviruses could prevent more cancers than might be estimated from those carrying viral genomes," he said.

Related Stories

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.