Researchers discover cause of immune system avoidance of certain pathogens

August 17, 2010

A special set of sugars found on some disease-causing pathogens helps those pathogens fight the body's natural defenses as well as vaccines, say two Iowa State University researchers.

This discovery may be a first step in understanding a disease family that includes for which there are currently no good vaccines or cures.

Nicola Pohl, professor of chemistry, and Christine Petersen, assistant professor of veterinary pathology, discovered that a natural coating of sugar interacts with the body's defense cells to dampen its own immune response.

The findings are published in the current online issue of the Journal of the American Chemical Society.

Pohl and Petersen began studying persistent such as tuberculosis and the parasite Leishmania five years ago when they noticed that some types of the parasite can make people sick, while others do not.

"One of the things I was curious about was that pathogenic strains of Leishmania have a different sugar coating on them than nonpathogenic strains," Pohl said.

"We asked the question 'Is it possible that just the sugar coating is enough to make something pathogenic or nonpathogenic?'" she said.

Leishmania-associated diseases are not usually found in the United States, but have been observed in soldiers returning from the Middle East. The diseases can cause unsightly sores, and can last a period of months, according to Pohl.

The diseases are often fatal to dogs in the United States.

"The problem is, in places like Bangladesh, where people are in a nutritionally compromised state, peoples' immune systems aren't strong enough, and the disease can be fatal," said Pohl.

Normally, when a disease-causing agent enters the body, cells called engulf and start to destroy the agent.

Leishmania-type diseases are resistant to this process.

To test the theory on the resistance effect of the sugar coating, Pohl and Petersen developed an experiment that required creating small beads measuring one micron in diameter to mimic the pathogens.

One group of beads was then coated with a type of sugar that is similar to that of Leishmania. Another set of beads was coated with a lactose-type sugar that isn't harmful to the cell. A third had no coating.

The beads were then introduced into macrophages.

When the uncoated beads were introduced into the macrophages, the cells noticed the beads and started an , as they should.

When the lactose-covered beads were introduced, they were also recognized and removed.

When the Leishmania-sugar covered beads were introduced, the macrophages took a much longer time to recognize their presence. Then, the immune defense system slowed down or dampened the attacks.

This dampening, Petersen and Pohl showed, is due to an interaction between the sugar on the bead and Toll-like receptor2 (TLR2) within the macrophage.

"There is something inherent about the sugars themselves, and the difference in these sugars, that dampens your normal response to the pathogen," said Pohl.

Pohl said they don't yet know exactly what that interaction is or how it works, but she hopes that this research may lead to more research eventually beating the disease.

"Right now we don't have good therapeutics against Leishmaniasis, and we don't have a vaccine for it, so basically you can't do anything about it," she added.

"The more information we have about this, the more we learn about how to circumvent this to get an effective vaccine," she said.

Petersen credits the partnership with Pohl as one of the key factors in understanding the problem.

Pohl's chemistry background doesn't often lead her to look at whole organisms and Petersen, as a veterinary pathologist, previously didn't look at the chemistry.

"Many of these critical sub-molecular interactions are often glossed over by immunologists and biologists," said Petersen. "But the work Nikki and I just published shows that they can make a much larger difference in how a pathogen is sensed by the ."

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.