Neurochip technology developed by Canadian team

August 10, 2010

The University of Calgary, Faculty of Medicine scientists who proved it is possible to cultivate a network of brain cells that reconnect on a silicon chip - or the brain on a microchip - have been involved in the development of new technology that monitors brain cell activity at a resolution never achieved before.

Developed with the National Research Council Canada (NRC), the new silicon chips are also simpler to use, which will help future understanding of how work under normal conditions and permit drug discoveries for a variety of neurodegenerative diseases such as Alzheimer's and Parkinson's.

The new technology from the lab of Naweed Syed, PhD, in collaboration with the NRC, is published online this month in the journal, Biomedical Microdevices.

"This technical breakthrough means we can track subtle changes in brain activity at the level of ion channels and synaptic potentials, which are also the most suitable target sites for drug development in neurodegenerative diseases and neuropsychological disorders," says Syed, professor and head of the Department of Cell Biology and Anatomy, member of the Hotchkiss Brain Institute and advisor to the Vice President Research on Initiative of the University of Calgary.

The new neurochips are also automated. Previously it took years of training to learn how to record ion channel activity from brain cells, and it was only possible to monitor one or two cells simultaneously. Now, larger networks of cells can be placed on a chip and observed in minute detail, allowing the analysis of several brain cells networking and performing automatic, large-scale drug screening for various brain dysfunctions.

"The success of this project was achieved by reaching across the boundaries of scientific disciplines," said Dr. Roman Szumski, NRC Vice President, Life Sciences. "This is a true partnership of neuroscientists, engineers and physicists from different Canadian R&D institutions. We are committed both to understanding the ultimate mystery of the brain and to developing tools and systems to accelerate development of better diagnostics and therapeutics for brain diseases."

This new technology has the potential to help scientists in a variety of fields and on a variety of research projects. Gerald Zamponi, PhD, professor and head of the Department of Physiology and Pharmacology, and member of the Hotchkiss Brain Institute at the University of Calgary, says, "This can likely be scaled up such that it will become a novel tool for medium throughput drug screening, in addition to its usefulness for basic biomedical research".

Related Stories

Recommended for you

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
5 / 5 (3) Aug 10, 2010
Brain implants? Uploading? Downloading? Memory enhancement?
LivaN
not rated yet Aug 11, 2010
Brain implants? Uploading? Downloading? Memory enhancement?

Can I get a cookie with those?
Kedas
not rated yet Aug 11, 2010
Brain implants? Uploading? Downloading? Memory enhancement?


Virus, hacking?
Dare I say it: "Inception"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.