Neurochip technology developed by Canadian team

August 10, 2010

The University of Calgary, Faculty of Medicine scientists who proved it is possible to cultivate a network of brain cells that reconnect on a silicon chip - or the brain on a microchip - have been involved in the development of new technology that monitors brain cell activity at a resolution never achieved before.

Developed with the National Research Council Canada (NRC), the new silicon chips are also simpler to use, which will help future understanding of how work under normal conditions and permit drug discoveries for a variety of neurodegenerative diseases such as Alzheimer's and Parkinson's.

The new technology from the lab of Naweed Syed, PhD, in collaboration with the NRC, is published online this month in the journal, Biomedical Microdevices.

"This technical breakthrough means we can track subtle changes in brain activity at the level of ion channels and synaptic potentials, which are also the most suitable target sites for drug development in neurodegenerative diseases and neuropsychological disorders," says Syed, professor and head of the Department of Cell Biology and Anatomy, member of the Hotchkiss Brain Institute and advisor to the Vice President Research on Initiative of the University of Calgary.

The new neurochips are also automated. Previously it took years of training to learn how to record ion channel activity from brain cells, and it was only possible to monitor one or two cells simultaneously. Now, larger networks of cells can be placed on a chip and observed in minute detail, allowing the analysis of several brain cells networking and performing automatic, large-scale drug screening for various brain dysfunctions.

"The success of this project was achieved by reaching across the boundaries of scientific disciplines," said Dr. Roman Szumski, NRC Vice President, Life Sciences. "This is a true partnership of neuroscientists, engineers and physicists from different Canadian R&D institutions. We are committed both to understanding the ultimate mystery of the brain and to developing tools and systems to accelerate development of better diagnostics and therapeutics for brain diseases."

This new technology has the potential to help scientists in a variety of fields and on a variety of research projects. Gerald Zamponi, PhD, professor and head of the Department of Physiology and Pharmacology, and member of the Hotchkiss Brain Institute at the University of Calgary, says, "This can likely be scaled up such that it will become a novel tool for medium throughput drug screening, in addition to its usefulness for basic biomedical research".

Related Stories

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
5 / 5 (3) Aug 10, 2010
Brain implants? Uploading? Downloading? Memory enhancement?
LivaN
not rated yet Aug 11, 2010
Brain implants? Uploading? Downloading? Memory enhancement?

Can I get a cookie with those?
Kedas
not rated yet Aug 11, 2010
Brain implants? Uploading? Downloading? Memory enhancement?


Virus, hacking?
Dare I say it: "Inception"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.