Cardiac imaging breakthrough developed at the University of Western Ontario

September 16, 2010

Cardiologists and surgeons may soon have a new tool to improve outcomes for patients requiring pacemakers, bypass surgery or angioplasties. Research led by Dr. James White and his colleagues at The University of Western Ontario has led to a new imaging technique, which provides a single, 3D high-resolution image of the heart revealing both its vasculature and the presence of scar tissue within the muscle. This novel imaging was performed using a 3-Tesla MRI at Western's Robarts Research Institute. The findings are published on-line in the Journal of the American College of Cardiology: Cardiovascular Imaging.

Injuries to the heart, including heart attacks or viral inflammation, commonly result in permanent damage or scarring of its muscle. "We've known for some time that myocardial (heart) can be imaged using MRI, but what we've now been able to do is to take this imaging to another level," explains Dr. White. "This is the first time we have been able to visualize myocardial scar and the heart's blood vessels at the same time. We are able to construct a three dimensional model of a person's heart to immediately understand the relationship between the heart's blood vessels and related permanent injury. This will help direct surgeons and to better target the blood vessels that lead to muscle capable of responding to their therapy, rather than to muscle that is irreversibly diseased."

New imaging technique developed by cardiologist, Dr. James A. White and colleagues at The University of Western Ontario shows 3-D image of the heart vasculature and myocardial scar tissue. Credit: Dr. James A. White

The technique works by first acquiring a 3D coronary image using a continuous infusion of a contrast called gadolinium, which makes the blood-pool light up brightly. The 3-T MRI takes images as this contrast is infused into the , providing a high resolution, 3-D image of the heart showing coronary blood vessels. Scar tissue is slow to give up this contrast agent and its signal is therefore retained despite a washing out of contrast from the blood stream and normal tissues. A repeat image, performed 20 minutes later, highlights the heart's scar, also in 3D. Because the two images are taken in the identical way using the exact same MRI pulse sequence, they're already perfectly suited to be fused to one another. The result is a fused, 3D model of the heart that shows both the heart's vessels and scar tissue.

The imaging technique was performed on 55 patients referred for either bypass surgery or a specialized pacemaker designed to improve heart function called Cardiac Resynchronization Therapy (CRT), demonstrating that the procedure was clinically feasible. The study was able to demonstrate that this novel may be valuable in the planning of these vascular-based cardiac interventions. Dr White describes that in bypass or angioplasty procedures surgeons have to decide whether or not to open up blocked blood vessels, but if they can see there is scar in that region, no benefit will be expected. Similarly, CRT pacemaker leads delivered to regions of scarred heart muscle may prevent any benefit from this therapy.

This is a 3-D image of the heart vasculature and myocardial scar tissue (white) created using a new imaging technique with a 3-T MRI developed by cardiologist, Dr. James A. White and colleagues at the University of Western Ontario. Credit: Dr. James A. White

Related Stories

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.