I win, you lose: Brain imaging reveals how we learn from our competitors

October 13, 2010
Our neural activity tends to be stimulated by our competitor's errors (as in the example shown here) rather than their successes. Credit: Dr. Paul Howard-Jones and Dr. Rafal Bogacz

Learning from competitors is a critically important form of learning for animals and humans. A new study has used brain imaging to reveal how people and animals learn from failure and success.

The team from Bristol University led by Dr Paul Howard-Jones, Senior Lecturer in Education in the Graduate School of Education and Dr Rafal Bogacz, Senior Lecturer in the Department of Computer Science, scanned the brains of players as they battled against an artificial opponent in a .

In the game, each player took turns with the computer to select one of four boxes whose payouts were simulating the ebb and flow of natural food sources.

Players were able to learn from their own successful selections but those of their competitor failed completely to increase their . Instead, it was their competitor's unexpected failures that generated this additional . Such failures generated both reward signals in the brains of the players, and learning signals in regions involved with inhibiting response. This suggests that we benefit from our competitors' failures by learning to inhibit the actions that lead to them.

This region of the mirror neuron system in the player's motor cortex increased its activity when the player made moves and also when they observed their computer opponent making the same "virtual" moves -- even though they knew it was a computer. Credit: Dr. Paul Howard-Jones and Dr. Rafal Bogacz

Surprisingly, when players were observing their competitor make selections, the players' brains were activated as if they were performing these actions themselves. Such 'mirror neuron' activities occur when we observe the actions of other humans but here the players knew their opponent was just a computer and no animated graphics were used. Previously, it has been suggested that the mirror neuron system supports a type of unconscious mind-reading that helps us, for example, judge others' intentions.

Dr Howard-Jones added: "We were surprised to see the mirror neuron system activating in response to a computer. If the human brain can respond as though a computer has a mind, that's probably good news for those wishing to use the computer as a teacher."

More information: The findings of the study are revealed in a paper published online by the journal – NeuroImage.

Related Stories

Recommended for you

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.