Tracking neuronal activity in the living brain

October 22, 2010, RIKEN
Figure 1: The fluorescent indicator YC-Nano reveals waves of calcium flux (left) corresponding to signals generated by Dictyostelium cells as they undergo aggregation and action potentials in mouse cortical pyramidal cells (center) with a better signal to noise ratio (right). Credit: 2010 Katsuhiko Mikoshiba & Takeharu Nagai

Refinements to a fluorescent calcium ion indicator give scientists a powerful tool for tracking neuronal activity in the living brain

As travel along chains of neurons, each cell undergoes a dramatic shift in its internal calcium ion (Ca2+) concentration because specialized channels allow to flood into the . This shift provides a valuable indicator for tracking neural activity in real time, so scientists have developed several fluorescent protein-based Ca2+ indicators that are genetically encoded and can therefore be expressed directly in of interest.

Generally these indicators do not perform as well in live animals as in vitro. Takeharu Nagai of Hokkaido University and Katsuhiko Mikoshiba of the RIKEN Brain Science Institute in Wako suspected that indicators with higher affinity for Ca2+ might work better. However, their approach was risky. “It was generally believed that extremely high-affinity Ca2+ indicators would result in low cell viability due to disturbed Ca2+ homeostasis, and show no signal changes due to saturation by resting Ca2+,” say Nagai and Mikoshiba. “From this point of view, our attempt was totally against common sense.”

Nevertheless, the indicators, dubbed YC-Nano, developed by Nagai and his colleagues proved to be a remarkable success. The indicators were derived from yellow cameleon (YC), a genetically encoded indicator consisting of two fluorescent proteins, a ‘donor’ and an ‘acceptor’, connected by a Ca2+-binding domain. In the presence of Ca2+, the structure of YC rearranges such that the two come close together in a manner that allows energy from the excited donor to induce a readily detectable signal from the acceptor; in the absence of Ca2+, only a minimal signal is produced.

The researchers introduced various modifications that lengthened the Ca2+-binding segment between the two fluorescent domains, introducing additional flexibility that considerably improved indicator sensitivity. The best-performing versions exhibited five-fold greater Ca2+ affinity than YC and a high dynamic range. “We were quite surprised that we managed to systematically produce a series of indicator variants with different affinity by a very simple protein engineering trick,” says Nagai.

YC-Nano accurately tracked the complex patterns of Ca2+ activation seen in the aggregating process of social amoeba Dictyostelium, revealing propagating waves throughout the aggregates in a rotating spiral. These indicators also performed well in monitoring in the brains of mice, and Mikoshiba foresees numerous experimental applications in the near future. “Since YC-Nano can be stably expressed in specific types of neurons for a long range of time,” he says, “we expect to perform chronic in vivo imaging and analyze the modifications of neuronal network activities underlying learning, development or diseases of the brain.”

More information: Horikawa, K., et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nature Methods 7, 729–732 (2010).

Related Stories

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Superagers' youthful brains offer clues to keeping sharp

February 22, 2018
It's pretty extraordinary for people in their 80s and 90s to keep the same sharp memory as someone several decades younger, and now scientists are peeking into the brains of these "superagers" to uncover their secret.

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.