Large-scale analysis identifies new genetic alterations associated with height

December 30, 2010

A large collaborative study has added to the growing list of genetic variants that determine how tall a person will be. The research, published by Cell Press on December 30 in the American Journal of Human Genetics, identifies uncommon and previously unknown variants associated with height and might provide insight into the genetic architecture of other complex traits.

Although environmental variables can impact attained adult height, it is clear that height is primarily determined by specific alleles that an individual inherits. Height is thought to be influenced by variants in a large number of genes, and each variant is thought to have only a small impact on height. However, the genetics of height are still not completely understood. "All of the variants needed to explain height have not yet been identified, and it is likely that the additional genetic variants are uncommon in the population or of very small effect, requiring extremely large samples to be confidently identified," explains Dr. Hakon Hakonarson from The Children's Hospital of Philadelphia.

To search for genetic variants associated with adult height, researchers performed a complex of more than 100,000 individuals. "We set out to replicate previous genetic associations with height and to find relevant genomic locations not previously thought to underpin this complex trait" explains Dr. Brendan Keating, also from The Children's Hospital of Philadelphia. The authors report that they identified 64 height-associated variants, two of which would not have been observed without such a large sample size and the inclusion of direct genotyping of uncommon single-nucleotide polymorphisms (SNPs). A SNP is a variation in just one nucleotide of a ; think of it as a spelling change affecting just one letter in an uncommonly long word.

These results suggest that genotyping arrays with SNPs that are relatively rare and occur in less than 5% of the population have the ability to capture new signals and disease variants that the common SNP arrays missed (i.e., 30 new signals in this study), as long as sample sizes are large enough. These low-frequency variants also confer greater effect sizes and, when associated with a disease, could be a lot closer to causative than more common variants. "The increased power to identify variants of small effect afforded by large sample size and dense genetic coverage including low-frequency SNPs within loci of interest has resulted in the identification of association between previously unreported genetic variants and height," concludes Dr. Keating.

Related Stories

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.