Switch off enzyme to control chronic pain, say researchers

January 12, 2011 By Paul Cantin

A team of researchers at the University of Toronto has developed a new drug targeted at parts of the brain and spinal cord associated with pain perception, which may more effectively control chronic pain caused by nerve injuries.

In a paper published Jan. 12 in the journal , a team led by Professor Min Zhuo of the Department of Physiology and Centre for the Study of Pain, the Canada Research Chair in Pain and Cognition, showed that a new drug called NB001 produced powerful pain-killing effects in mice and in human lines.

“Acute or physiological pain is necessary for animals and humans to get through daily life. Minor pain alerts the body that something is wrong,” said Zhuo. “On other hand, increased and unmanageable nerve pain, typically described as chronic ‘shooting’ or ‘burning’ sensations, has no survival benefit and is usually caused by severe injury or diseases such as cancer or AIDS.”

Chronic pain one of the most common health problems worldwide. In extreme cases, even the gentle pressure of clothing rubbing against the skin or the bending of a joint can become unbearable. Previous studies have found that chronic pain is not just a prolonged form of acute pain, but arises from distinct changes in synapses, the junctions that permit neurons to pass through to another cell, along sensory pathways in the brain and . Unfortunately, most conventional painkillers don’t effectively shut off chronic pain and have a tendency to also attack acute pain.

In the paper, entitled Identification of an Adenylyl Cyclase Inhibitor for Treating Neuropathic and Inflammatory Pain, the researchers found that pain may be controlled by using NB001 to block a particular enzyme known as type 1 adenylate cyclase, or AC1. That enzyme is mainly produced in the neurons of the spinal cord and front region of the brain during nerve injury. Zhuo and his colleagues previously showed that knocking out the AC1 gene significantly reduced or blocked chronic pain in mice. Yet this time, instead of blocking AC1 in the entire body, the new drug works by only blocking AC1 in specific regions of the brain and spinal cord. The dose of NB001 required for producing analgesic effects is at least 10-50 times lower than current chronic pain drugs in the market.

“The findings suggest that AC1 is critical for various forms of chronic pain, but does not contribute to acute pain. Moreover, unlike other drug targets for , AC1 is selectively expressed in neurons and thus is less likely to cause potential side effects in non-neuronal organs such as the heart, liver, and kidney,” Zhuo said.

Related Stories

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.