New insight into neuronal survival after brain injury

January 12, 2011, Cell Press

A new study identifies a molecule that is a critical regulator of neuron survival after ischemic brain injury. The research, published by Cell Press in the January 13 issue of the journal Neuron, may lead to new therapies that reduce damage after a stroke or other injuries that involve an interruption in blood supply to the brain.

Ischemic is damage caused by a restriction in blood supply. Neuronal death after an interruption in the supply of oxygen and glucose involves a complex cascade of pathological events and, although previous research has identified key signaling pathways involved in neuronal death, factors contributing to neuronal survival after ischemia are not well understood. "Although a number of molecules and compounds conferring resistance to ischemic stresses have been identified, they have failed to be protective in clinical trials despite promising preclinical data," explains senior study author, Dr. Kazuo Kitagawa from the Osaka University Graduate School of Medicine in Japan.

Earlier research implicated a molecule called cAMP responsive elements (CREB) in the protection of neurons after ischemia. CREB is known to regulate many different genes and plays a role in diverse . In the current study, Dr. Kitagawa, coauthor Dr. Hiroshi Takemori, and their colleagues found that salt-inducible kinase 2 (SIK2) was expressed in neurons at high levels but was reduced after ischemic injury. They went on to show that SIK2 suppressed CREB-mediated after oxygen and glucose deprivation and that neuronal survival after ischemia was significantly increased in mice that were lacking SIK2.

"We found that oxygen and glucose deprivation induced SIK2 degradation concurrently with regulation of the CREB-specific coactivator transducer of regulated CREB activity 1 (TORC1), resulting in activation of CREB and its downstream targets," says Dr. Takemori. These findings suggest that SIK2 plays a critical role in neuronal survival and may have clinical applications. "Our results suggest that the SIK2-TORC1-CREB may serve as a potential therapeutic target for promoting the survival of neurons," concludes Dr. Kitagawa. "These findings also raise new opportunities for the development of novel therapeutics."

Related Stories

Recommended for you

Every experience that the brain perceives is unique

February 20, 2018
Neuronal activity in the prefrontal cortex represents every experience as "novel." The neurons adapt their activity accordingly, even if the new experience is very similar to a previous one. That is the main finding of a ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

Electrical implant reduces 'invisible' symptoms of man's spinal cord injury

February 19, 2018
An experimental treatment that sends electrical currents through the spinal cord has improved "invisible" yet debilitating side effects for a B.C. man with a spinal cord injury.

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Newborn babies who suffered stroke regain language function in opposite side of brain

February 17, 2018
It's not rare that a baby experiences a stroke around the time it is born. Birth is hard on the brain, as is the change in blood circulation from the mother to the neonate. At least 1 in 4,000 babies are affected shortly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.