HIV makes protein that may help virus's resurgence

February 25, 2011

New research enhances the current knowledge of how human immunodeficiency virus type-1 (HIV-1), which causes AIDS, controls the cell cycle of cells that it infects. The new findings may shed light on how the virus reactivates after entering a dormant state, called latency.

"As we better understand the biological events that revive from latency, we hope to devise ways to eventually intervene in this process with better treatments for people with ," said study leader Terri H. Finkel, M.D., Ph.D., chief of Rheumatology at The Children's Hospital of Philadelphia.

Finkel is the senior author of a study published in the Jan. 27 issue of the journal Blood. The first author, also from Children's Hospital, is Jiangfang Wang, M.D., Ph.D.

Viral latency is one of the persistent problems in treating HIV infection. Current combinations of anti-HIV drugs can reduce HIV to undetectable levels, but the virus hides in latently infected in a sort of . If a patient stops taking medication, or is weakened by a different infection, HIV can make a resurgence out of its viral reservoirs, often becoming resistant to previously effective drugs.

The current study focused on a protein, Vif (for viral infectivity factor), that HIV-1 produces. Finkel and colleagues previously discovered that Vif causes HIV-infected cells to stop growing at one phase of the cell cycle, the G2 phase. The study team has now found that Vif also acts at an earlier stage in the cell cycle, driving cells out of the G1 phase and into the more active S phase.

This activity may be important, said Finkel, because G1 is a resting phase, and a biological interaction that "wakes up" a latent infected cell may reactivate the infection. Other viruses that have a latent infectious state, such as the and the Epstein-Barr virus, also express proteins that drive a transition from G1 to S phase. "By regulating the cell cycle, viruses control their infectivity," said Finkel.

The researchers carried out their work in HeLa cells, a human cell line long used in cell studies, as well as in human T cells, immune cells found in the blood. They identified two proteins, Brd4 and Cdk9, which interact with Vif. This interaction was a new discovery, although the proteins were already known to regulate the progression of the cell cycle.

Identifying Vif's cellular partners may also implicate them as potential targets for therapy. "If we can interrupt the activity of Brd4 or Cdk9, we may be able to prevent latent infection from becoming active," said Finkel. "Alternatively, by harnessing Brd4 or Cdk9, we may be able to drive cells out of latency and make the virus susceptible to anti-HIV drugs." She added that early preclinical testing of inhibitors is getting under way for other conditions, but cautioned that it is too early to foresee whether, or how soon, her research findings will lead to clinical treatments for HIV.

More information: "HIV-1 Vif promotes the G1-to S-phase cell-cycle transition," Blood, Jan. 27, 2011. doi: 10.1182/blood-2010-06-289215

Related Stories

Recommended for you

Research on HIV viral load urges updates to WHO therapy guidelines

November 24, 2017
A large cohort study in South Africa has revealed that that low-level viraemia (LLV) in HIV-positive patients who are receiving antiretroviral treatment (ART) is an important risk factor for treatment failure.

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

National roll-out of PrEP HIV prevention drug would be cost-effective

October 18, 2017
Providing pre-exposure prophylaxis (PrEP) medication to men who have sex with men who are at high risk of HIV infection (equivalent to less than 5% of men who have sex with men at any point in time) in England would be cost-effective, ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.