Method of DNA repair linked to higher likelihood of genetic mutation

February 15, 2011
A chromosome’s broken end invades an intact DNA molecule and initiates replication that can lead to a genomic instability. Credit: Anna Malkova, Ph.D., School of Science at Indiana University-Purdue University Indianapolis

Accurate transmission of genetic information requires the precise replication of DNA. Errors in DNA replication are common and nature has developed several cellular mechanisms for repairing these mistakes. Mutations, which can be deleterious (development of cancerous cells), or beneficial (evolutionary adaption), arise from uncorrected errors.

Researchers from Indiana University-Purdue University Indianapolis (U.S.A) and Umea University (Sweden) report that a method by which cells repair breaks in their DNA, known as Break-induced Replication (BIR), is up to 2,800 times more likely to cause genetic mutation than normal . When one or many cells repair themselves using the efficient BIR method, accuracy is lost. These findings will publish next week in the online, open access journal .

"When BIR occurs, instead of using a "band aid" to repair a chromosomal break, the broken piece invades another chromosome and initiates replication which happens at the wrong place and at the wrong time and probably with participation of wrong proteins," said Anna Malkova, Ph.D., Associate Professor of Biology at the School of Science at IUPUI, who led the study.

The researchers used yeast to investigate the level of mutagenesis associated with BIR and found that the process's proclivity to cause mutation was not effected by where in the DNA the repair was made. But why is BIR so inaccurate as compared to normal replication?

"We didn't find a smoking gun," said Malkova, also an adjunct associate professor of medical and at the Indiana University School of Medicine. "We think there are at least four changes to the replication machinery that might occur to create a perfect storm or synergy that make BIR repair so mutagenic."

For example, during BIR, the researchers found a dramatic increase in the concentration of nucleotides – the building blocks used to form DNA.

"Our findings strongly suggest that mutagenesis caused by BIR doesn't happen slowly, it occurs in surges – sudden bursts which may lead to cancer," said Malkova, who is a geneticist. "We plan to continue investigating BIR in the hope of finding clues as to why this means of cell repair is so likely to cause mutations. The ultimate goal, of course, is to prevent those mutations that cause cancer."

More information: Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, et al. (2011) Break-Induced Replication Is Highly Inaccurate. PLoS Biol 9(2): e1000594. doi:10.1371/journal.pbio.1000594

Related Stories

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.