The real avatar: Researchers use virtual reality and brain imaging to hunt for the science of the self

February 17, 2011, Ecole Polytechnique Federale de Lausanne
Olaf Blanke conducts experiment to understand the way the brain represents the body by combining VR induced illusions and brain signal readings to better understand the cognitive basis for spatial representation. Credit: EPFL

That feeling of being in, and owning, your own body is a fundamental human experience. But where does it originate and how does it come to be? Now, Professor Olaf Blanke, a neurologist with the Brain Mind Institute at EPFL and the Department of Neurology at the University of Geneva in Switzerland, announces an important step in decoding the phenomenon. By combining techniques from cognitive science with those of Virtual Reality (VR) and brain imaging, he and his team are narrowing in on the first experimental, data-driven approach to understanding self-consciousness.

In recent unpublished work, Blanke and his fellow researchers performed a series of studies in which they immersed subjects, via VR settings, into the body of an avatar, or virtual human. Each subject was fitted with an electrode-studded skullcap to monitor brain activity and exposed to different digital, 3D environments through a head-mounted stereoscopic visor or projections on a large screen.

Blanke and his colleagues then perturbed the most fundamental aspects of consciousness in their subjects, such as "Where am I localized in space" and "What is my body?" by physically touching their real-life volunteers either in or out of sync with the avatar. They even swapped perspectives from first to third person and put their male subjects inside female avatars, all the while measuring the change in . Use of electrical meant subjects could stand, move their heads, and (in the most recent experiments) walk with the VR on. Other techniques such as fMRI would have required them to remain still.

The team's results expand on clinical studies done in neurological patients reporting out-of-body experiences. And the data show marked changes in the response of the brain's temporo-parietal and frontal regions—the parts of the brain responsible for integrating touch and vision into a coherent perception -- compared to a series of control conditions.

"Traditional approaches have not been looking at the right information in order to understand the notion of the 'I' of conscious feeling and thinking," Blanke says. "Our research approaches the self first of all as the way the body is represented in the brain and how this affects the conscious mind. And this concept of the bodily self most likely came before more developed notions of 'I' in the evolutionary development of man."

A deeper understanding of the neurobiological basis for the self could lead to advances in the fields of touch and balance perception, neuro-rehabilitation, and pain treatments, contribute to the understanding of neurological and psychiatric disease, and have impacts on the fields of robotics and virtual reality.

But finding basic brain response to VR is just the beginning. Next up for the researchers is to induce stronger illusions of the self by altering signals of balance and limb position—two very powerful bodily cues. Once subjects can no longer distinguish between the real and the virtual self, and imaging may be able to glimpse the causal mechanisms of self-consciousness and solve the mystery of the "I" once and for all.

Related Stories

Recommended for you

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

RayVecchio
not rated yet Feb 17, 2011
This is pretty much in agreement with what Damasio says...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.