Investigators discover enzyme essential for healthy lung development

March 29, 2011, Children's Hospital Los Angeles
Pictured are Ahmed El-Hashash, PhD, senior research scientist, and David Warburton, MD, director of Developmental Biology and Regenerative Medicine at the Saban Research Institute. Credit: Photo courtesy of Children's Hospital Los Angeles.

Investigators at The Saban Research Institute of Children's Hospital Los Angeles have provided the first evidence that Eya1 protein phosphatase is a crucial regulator of the development of embryonic lung epithelial stem cells.

The correct functioning of lung epithelium is essential to life. Cellular polarity of lung epithelial cells, meaning that they have an asymmetrical orientation or a front and back, is crucial. of cell polarity has been associated with developmental disorders as well as cancer. Until now, little has been known about the mechanism that controls cell polarity, cell fate and self-renewal of embryonic lung epithelial stem cells. David Warburton, MD, director of Developmental Biology and Regenerative Medicine at The Saban Research Institute, and Ahmed El-Hashash, PhD, senior research scientist carrying out this study, will release their findings in the upcoming issue of Development.

"We know that loss of polarity in pulmonary epithelial cells is associated with lung cancer and . Knowing that Eya1 regulates polarity, we now have another target for intervening in those disease processes," said Dr. Warburton.

They have determined that Eya1, a , controls cell polarity, cell fate and self-renewal in the mouse embryonic lung epithelial stem cells. They have also provided the first evidence that these stem cells are polarized with characteristic perpendicular cell divisions.

In vivo and in vitro experiments showed that interfering with Eya1 phosphatase function resulted in defective epithelial cell polarity and mitotic spindle orientation; disrupted Numb, a cell fate determinant; and inactivated Notch signaling, which is involved in cell segregation and division, thereby establishing Eya1 as an important regulator in the development of embryonic lung stem cells.

"Identification of Eya1 mechanisms of regulating cell polarity, cell fate and self-renewal, will help to harness the regenerative potential of lung , and to identify novel targets for the prevention or rescue therapy of fatal lung disease, and for lung regeneration. This will also help to develop stem cell-based therapy to treat patients with lung diseases, " said Dr. El-Hashash, PhD. "Solutions to the problems concerning regeneration of lung tissue for restoration of functional alveoli are at the cutting edge of identifying novel therapeutic options for diseases like COPD and fibrosis."

Related Stories

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.