Problem proteins in Alzheimer's

March 2, 2011 By Jonathan Wood

( -- In Alzheimer's disease, two proteins are known to accumulate and build up in the brain. One protein called amyloid β aggregates into large disruptive ‘plaques’, while tau protein forms tangled fibres within nerve cells.

Research has tended to focus on amyloid β, since small numbers of these proteins bound together are known to be toxic to the neurons in the .

But there is some evidence to suggest tau may also be involved in the processes which eventually lead to the memory problems and cognitive decline seen in Alzheimer’s.

Researchers at Oxford University have used a sensitive laboratory model of learning and memory to investigate any connection between amyloid β and tau. They found that tau is absolutely required for amyloid β to disrupt the function of the mouse nerve cells in the lab model. The results were published last month in the Journal of Neuroscience</i>.

"This is one of the first investigations of the mechanisms linking amyloid β and tau that is relevant to the early stages of Alzheimer’s disease," says Dr. Mariana Vargas-Caballero of the Department of Physiology, Anatomy and Genetics, who led the work.

Mariana and colleagues looked at the strengthening of connections between mouse neurons in a dish, since the strengthening of connections in the brain’s neural circuits is thought to be how memories are formed and consolidated.

They found that amyloid β impairs the strengthening of the neural connections, or ‘synaptic plasticity’, although the remained healthy in all other aspects that they could measure. But crucially, in neurons from mice engineered to have no , the amyloid β had no effect on this cellular model of memory.

"This came as a complete surprise. It is a strong and reproducible effect," says Olivia Shipton of the Department of Physiology, Anatomy and Genetics, who is first author on the paper.

The team then went on to show that blocking the activity of tau using a specific chemical inhibitor also prevented the detrimental effects of amyloid β on the mouse neurons.

While it might be tempting to leap to the conclusion that this inhibitor could offer a promising avenue for the development of drugs to slow or halt Alzheimer’s onset, Mariana is more cautious. She says the stage the research is at is more about understanding the disease processes of early Alzheimer’s.

"We want to know how amyloid β can lead to impaired synaptic plasticity as we can assume that this is like what happens in early Alzheimer’s disease. The findings should help us unravel the mechanism involved," she explains.

"There is a huge gap in understanding what is relevant to the situation in humans. But we do now have a sensitive system to study what links amyloid β and tau, and tau and dysfunction in neural connections.

"It is possible that pinpointing where in the chain of events tau is located could allow people in time to develop drug candidates to slow or stop the disruption of neural connections," she adds, but believes that more research is required to first understand the molecular pathways involving tau.

More information:

Related Stories

Recommended for you

Researchers discover fundamental rules for how the brain controls movement

October 24, 2017
The human brain is a mysterious supercomputer. Billions of neurons buzz within an intricate network that controls our every thought, feeling, and movement. And we've only just begun to understand how it all works.

A little myelin goes a long way to restore nervous system function

October 24, 2017
In the central nervous system of humans and all other mammals, a vital insulating sheath composed of lipids and proteins around nerve fibers helps speed the electrical signals or nerve impulses that direct our bodies to walk, ...

Neuroscientists build case for new theory of memory formation

October 23, 2017
Learning and memory are generally thought to be composed of three major steps: encoding events into the brain network, storing the encoded information, and later retrieving it for recall.

Running on autopilot: Scientists find important new role for 'daydreaming' network

October 23, 2017
A brain network previously associated with daydreaming has been found to play an important role in allowing us to perform tasks on autopilot. Scientists at the University of Cambridge showed that far from being just 'background ...

Rhythm of memory: Inhibited neurons set the tempo for memory processes

October 23, 2017
The more we know about the billions of nerve cells in the brain, the less their interaction appears spontaneous and random. The harmony underlying the processing of memory contents has been revealed by Prof. Dr. Marlene Bartos' ...

Researchers demonstrate 'mind-reading' brain-decoding tech

October 23, 2017
Researchers have demonstrated how to decode what the human brain is seeing by using artificial intelligence to interpret fMRI scans from people watching videos, representing a sort of mind-reading technology.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 03, 2011
Findrxonline says on its website that should further investigate that only thus will achieve the goal of finding a cure for Alzheimer's disease.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.