Neurorobotics reveals brain mechanisms of self-consciousness

April 27, 2011

A new study uses creative engineering to unravel brain mechanisms associated with one of the most fundamental subjective human feelings: self-consciousness. The research, published by Cell Press in the April 28 issue of the journal Neuron, identifies a brain region called the temporo-parietal junction (TPJ) as being critical for the feeling of being an entity localized at a particular position in space and for perceiving the world from this position and perspective.

Recent theories of self-consciousness highlight the importance of integrating many different sensory and motor signals, but it is not clear how this type of integration induces subjective states such as self-location ("Where am I in space?") and the first-person perspective ("From where do I perceive the world?"). Studies of neurological patients reporting out-of-body experiences have provided some evidence that interfering with the integration of multisensory body information may lead to pathological changes of the first-person perspective and self-location. However, it is still not known how to examine mechanisms associated with self-consciousness.

"Recent behavioral and physiological work, using video-projection and various visuo-tactile conflicts showed that self-location can be manipulated in healthy participants," explains senior study author, Dr. Olaf Blanke, from the Ecole Polytechnique Fédérale de Lausanne in Switzerland. "However, so far these experimental findings and techniques do not allow for the induction of changes in the first-person perspective and have not been integrated with neuroimaging, probably because the experimental set-ups require participants to sit, stand, or move. This makes it very difficult to apply and film the visuo-tactile conflicts on the participant's body during standard brain imaging techniques."

Making use of inventive neuroimaging-compatible robotic technology that was developed by Dr. Gassert's group at the Swiss Federal Institute of Technology in Zurich, Dr. Blanke and colleagues studied healthy subjects and employed specific bodily conflicts that induced changes in self-location and first-person perspective while simultaneously monitoring brain activity with functional magnetic resonance imaging. They observed that TPJ activity reflected experimental changes in self-location and first-person perspective. The researchers also completed a large study of neurological patients with out-of-body experiences and found that brain damage was localized to the TPJ.

"Our results illustrate the power of merging technologies from engineering with those of neuroimaging and cognitive science for the understanding of the nature of one of the greatest mysteries of the human mind: self-consciousness and its neural mechanisms," concludes Dr. Blanke. "Our findings on experimentally and pathologically induced altered states of self-consciousness present a powerful new research technology and reveal that TPJ activity reflects one of the most fundamental subjective feelings of humans: the feeling that 'I' am an entity that is localized at a position in space and that 'I' perceive the world from here."

More information: Ionta et al.: “Multisensory Mechanisms in Temporo-Parietal Cortex Support Self-Location and First-Person Perspective.”

Related Stories

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.