Common transplant drug inhibits breast cancer growth, study shows

May 26, 2011

Tacrolimus, a drug that is commonly used to prevent organ transplantation rejection, inhibits breast cancer growth in pre-clinical studies. The finding from UNC scientists was reported in the May 26th PLoS ONE.

Nancy Klauber-DeMore, MD, associate professor of surgery, said, " We now have a rationale for performing human clinical trials to determine if Tacrolimus reduces breast cancer growth in humans. Since Tacrolimus is already an FDA-approved drug, the safety and toxicity profile is known, which means that Tacrolimus could potentially go directly into a later stage clinical trial."

Klauber-DeMore is a member of UNC Lineberger Comprehensive Cancer Center and co-founder and Chief Scientific Officer of Enci Therapeutics, Inc., a UNC spin-off biotech company.

Tacrolimus is used to prevent rejection (when a person's of a transplanted organ by the immune system of a person receiving the organ) in people who have received kidney, liver, or . Tacrolimus is in a class of medications called immunosuppressants. It works by decreasing the activity of the immune system to prevent it from attacking the transplanted organ. Tacrolimus does this by binding to and inactivating a protein called calcineurin in immune cells.

Although preventing organ transplant rejection and inhibiting cancer growth may seem unrelated, the team realized that activating calcineurin is a common pathway that stimulates both the immune system and the growth of new blood vessels to tumors. Blocking to tumors is a therapeutic strategy to inhibit tumor growth.

Klauber-DeMore's group had previously discovered that a protein called SFRP2 stimulates blood vessel growth and is expressed in human breast cancers. While investigating the mechanism through which SFRP2 stimulates blood vessel growth, they found that SFRP2 activates calcineurin in . Based on this mechanism, Klauber-DeMore thought that Tacrolimus might also bind to and inactivate calcineurin in blood vessel cells, thereby blocking new blood vessel growth to tumors. The team tested this theory in a pre-clinical breast tumor model and found that orally administered Tacrolimus inhibited breast tumor growth rate by over 70 percent.

Klauber-DeMore said, "This data is encouraging, but we don't know yet whether Tacrolimus will inhibit breast in humans. However, this pre-clinical study provides a reasoning for the next step, which will be to perform a clinical trial using Tacrolimus in patients with breast cancer."

Related Stories

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.