'I can hear a building over there': Researchers study blind people's ability to echolocate

May 25, 2011

It is common knowledge that bats and dolphins echolocate, emitting bursts of sounds and then listening to the echoes that bounce back to detect objects. What is less well-known is that people can echolocate too. In fact, there are blind people who have learned to make clicks with their mouths and to use the returning echoes from those clicks to sense their surroundings. Some of these individuals are so adept at echolocation that they can use this skill to navigate unknown environments, and participate in activities such as mountain biking and basketball.

Researchers at The University of Western Ontario's Centre for Brain and Mind (London, Ontario, Canada) have recently shown that blind echolocation experts use what is normally the 'visual' part of their brain to process the clicks and echoes. The study, appearing this month in the scientific journal PLoS ONE, is the first to investigate the of natural human echolocation.

Senior author Mel Goodale, Canada Research Chair in Visual Neuroscience, and Director of the Centre for Brain and Mind, says, "It is clear echolocation enables blind people to do things otherwise thought to be impossible without vision and can provide blind and visually-impaired people with a high degree of independence."

Goodale and his team of researchers first made recordings of the clicks and their very faint echoes using tiny in the ears of the blind echolocators as they stood outside and tried to identify different objects such as a car, a flag pole, and a tree. The researchers then played the recorded sounds back to the echolocators while their was being measured in Western's state-of-the-art 3T (fMRI) brain scanner.

Remarkably, when the echolocation recordings were played back to the blind experts, not only did they perceive the objects based on the echoes, but they also showed activity in those areas of their brain that normally process in sighted people. Most interestingly, the brain areas that process auditory information were no more activated by sound recordings of outdoor scenes containing echoes than they were by sound recordings of outdoor scenes with the echoes removed.

When the same experiment was carried out with sighted control people who did not echolocate, these individuals could not perceive the objects, and neither did their brain show any echo-related activity, suggesting visual brain areas play an important role for in blind people.

According to Goodale, this research will provide a deeper understanding of brain function, particularly how the senses are processed and what happens neurologically when one sense is lost.

More information: Thaler L, Arnott SR, Goodale MA (2011) Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts. PLoS ONE 6(5): e20162. doi:10.1371/journal.pone.0020162

Related Stories

Recommended for you

Study uncovers specialized mouse neurons that play a unique role in pain

August 17, 2017
Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise ...

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.