Sleep switch found in fruit flies

June 23, 2011, Washington University School of Medicine

Rather than count sheep, drink warm milk or listen to soothing music, many insomniacs probably wish for a switch they could flick to put themselves to sleep.

Scientists at Washington University School of Medicine in St. Louis have discovered such a switch in the brains of . In a study appearing June 24 in Science, the researchers show that a group of approximately 20 cells in the brains of fruit flies controls when and how long the flies . Slumber induced through this sleep switch was essential to the creation of , directly proving a connection between memory and sleep that scientists have long suspected.

"This is exciting because this induced sleep state so far appears to be very similar to spontaneous sleep," says Paul Shaw, PhD, associate professor of . "That means we can manipulate these cells to explore a whole new realm of questions about the purposes of sleep. Such studies might one day lead us to more natural ways of inducing sleep in humans."

The key cells are found in an area of the fly brain known as the dorsal fan-shaped body. Scientists in Shaw's lab genetically modified the cells to increase their activity. One effect of making these cells more active was that adult flies slept for an additional seven hours a day.

When scientists added a gene that increases the cells' activity only at warmer temperatures, they could determine when and how long flies would sleep by simply adjusting the temperature in the flies' habitats.

To analyze the similarity of induced sleep to spontaneous sleep, scientists tested whether induced slumber was essential to the formation of long-term memories. In a process called conditioning, male flies were exposed to other males genetically modified to make female sex pheromones.

"The subject fly will initiate courtship because of the female pheromones, but the modified male making those pheromones inevitably rejects him," says first author Jeff Donlea, PhD, now a postdoctoral research assistant at Oxford University. "This is an ecologically relevant way to test memory because a male fly in the wild needs to quickly assess whether a particular female is interested in mating so that he doesn't waste time making unproductive advances."

The researchers used a training protocol that normally only creates a memory that lasts a few hours in fruit flies. After being "rejected" multiple times over three hours, the fly learns not to make advances when he encounters the altered male again at a later time. But when scientists used the cells in the dorsal fan-shaped body to put the fly to sleep immediately after training, the fly formed a long-term memory of his experience that lasted for at least several days.

To rule out the possibility that the increased excitability of the cells could be directly responsible for the long-term memory, scientists activated the sleep-regulating cells following training but prevented the flies from sleeping. The flies did not remember the training, indicating that sleep itself was important for the consolidation of memory.

Scientists have yet to determine whether a counterpart for the dorsal fan-shaped body exists in human brains. Shaw's lab is currently working to see if the they singled out can be matched to other brain cell types based on the chemical messengers they produce.

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.