Gene therapy reverses type 1 diabetes in mice

June 6, 2011, The Endocrine Society

An experimental cure for Type 1 diabetes has a nearly 80 percent success rate in curing diabetic mice. The results, to be presented Saturday at The Endocrine Society's 93rd Annual Meeting in Boston, offer possible hope of curing a disease that affects 3 million Americans.

"With just one injection of this , the mice remain diabetes-free long term and have a return of normal in the body," said Vijay Yechoor, MD, the principal investigator and an assistant professor at Baylor College of Medicine in Houston.

Yechoor and his co-workers used their new gene therapy in a nonobese of . The therapy attempts to counter the two defects that cause this autoimmune form of diabetes: autoimmune attack and destruction of the insulin-producing by . First, the researchers genetically engineer the formation of new beta cells in the liver using neurogenin3. This gene defines the development of pancreatic islets, which are clusters of beta cells and other cells. Along with neurogenin3, they give an islet growth factor gene called betacellulin to stimulate growth of these new islets.

The second part of the therapy aims to prevent the mouse's immune system from killing the newly formed islets and beta cells. Previously the research team combined neurogenin3 with the gene for interleukin-10, which regulates the immune system. However, with that gene, they achieved only a 50 percent cure rate in , Yechoor said.

In the new study, the investigators added a gene called CD274 or PD-L1 (programmed cell death 1 ligand-1). It inhibits activity of the T cells only around the new islets in the liver and not in the rest of the body, he explained.

"We want the gene to inactivate T cells only when they come to the new . Otherwise, the whole body would become immunocompromised," Yechoor said.

This treatment reversed diabetes in 17 of 22 mice, or 78 percent. Diabetic mice that otherwise live only six to eight weeks were growing normally and were free of diabetes as long as 18 weeks after injection of the gene therapy, Yechoor said.

This treatment approach, he said, "has the potential to be a curative therapy for Type 1 diabetes."

The other mice reportedly responded to the gene therapy initially but then became diabetic again. There are two possibilities, according to Yechoor, why the therapy did not achieve a 100 percent cure rate.

"T cells are the predominant part of islet destruction, but other pathways, including beta cells could also contribute, meaning we would need to target those pathways as well," Yechoor said. "Or maybe the efficiency of this new protective gene is not sufficient, and we need to give a larger dose."

Explore further: Gene therapy reverses type 1 diabetes in mice

Related Stories

Gene therapy reverses type 1 diabetes in mice

June 21, 2010
Researchers have developed an experimental cure for Type 1 diabetes, a disease that affects about one in every 400 to 600 children and adolescents. They will present their results in a mouse model of Type 1 diabetes on Sunday ...

Stem cells crucial to diabetes cure in mice

March 16, 2009
More than five years ago, Dr. Lawrence C.B. Chan and colleagues in his Baylor College of Medicine laboratory cured mice with type 1 diabetes by using a gene to induce liver cells to make insulin.

New technique eliminates toxic drugs in islet transplant in diabetic mice

November 20, 2008
The body's immune system hates strangers. When its security patrol spots a foreign cell, it annihilates it.

Immune cell entry into the pancreatic islets key to understanding type 1 diabetes origins

October 8, 2009
St. Jude Children's Research Hospital investigators have discovered how destructive immune cells gain access to insulin-producing cells and help cause diabetes.

How insulin-producing cells develop -- new finding could help fight against diabetes

May 17, 2007
A key aspect of how embryos create the cells which secrete insulin is revealed in a new study published tomorrow (18 May) in the Journal of Biological Chemistry. The researchers hope that their findings will enable the development ...

Researchers engineer pancreatic cell transplants to evade immune response

December 31, 2008
In a finding that could significantly influence the way type 1 diabetes is treated, researchers at Albert Einstein College of Medicine of Yeshiva University have developed a technique for transplanting insulin-producing pancreatic ...

Recommended for you

Scientists find malformations and lower survival rates in zebrafish embryos exposed to cannabinoids

July 16, 2018
Exposure to the main chemical components of cannabis has a detrimental effects on developing zebrafish embryos, according to a new study conducted by University of Alberta biologists.

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.