Roadmap published for dynamic mapping of estrogen signaling in breast cancer

June 16, 2011

The first roadmap to mathematical modeling of a powerful basic "decision circuit" in breast cancer has been developed and published in Nature Reviews Cancer.

The preliminary mathematical model is the first result of a $7.5 million federal grant, awarded to scientists at the Lombardi Comprehensive Cancer Center at Georgetown University Medical Center (GUMC) and collaborators at Virginia Tech and Fox Chase Cancer Center, to develop a systems approach to understanding and treating one of the most common forms of .

"A cell is an and make decisions that promote their growth, so we are striving to understand how these cells make mathematically-based choices based on inputs, processing, and outputs," says lead investigator Robert Clarke, PhD, DSc, a professor of oncology at Lombardi and GUMC's newly appointed Dean for Research.

The model, which is being built in modules, is designed to understand estrogen signaling in , and by extension, why some cancer cells are susceptible to endocrine therapy while others are not. The estrogen hormone drives over half of the 180,000 cases of diagnosed each year, yet endocrine therapies designed to shut down this growth pathway are not as successful as simpler, human-derived models would have predicted, Clarke says.

"We need an engineering approach to a biological problem, and this is a very novel, and promising, start," says Clarke. "No one has built a model of breast cancer decision- making like this before."

His colleagues in this endeavor are Louis M. Weiner, MD, director of the Lombardi Comprehensive Cancer Center; John J. Tyson, PhD, first author of this study, as well as a computational cell biologist and professor at Virginia Tech; and William T Baumann, PhD, an electrical and computer engineer and associate professor at Virginia Tech. Tyson and Baumann have assembled a team of graduate students and postdoctoral researchers to assist in the modeling project.

"We are providing a roadmap of how a modeler might capture, in mathematical form, the molecular events controlling cell growth, proliferation, damage responses, and programmed cell death," says Tyson. "The value of this enterprise will be measured ultimately by new insights provided by the model into the logic and functionality of estrogen-receptor signaling and by the effectiveness of the model as a tool for experimental prediction and design."

Although scientists have amassed a large body of information about the genes and proteins involved in pathways that govern cancer development and growth, and based on that, have developed some "good ideas about how they go awry in certain cancers, most of our understanding relies on intuitive reasoning about highly complex networks of biochemical interactions," the researchers say in their study. "Wouldn't it be better if we could frame a reaction network in precise mathematical terms and use computer simulation to work out the implications of how the network functions in normal cells and malfunctions in cancer cells?"

"The hallmark of cancer cells is that they are making decisions that are right for them, not for the survival of the human organism, so we need to understand those choices," Clarke says.

The roadmap detailed in Nature Reviews Cancer is built on the idea that a cell is an information processing system, receiving signals from its environment and its own internal state, interpreting those signals, and making appropriate cell-fate decisions, such as growth and division, movement, differentiation, self-replication, or cell death.

To that end, the investigators have already begun to model separate modules that computers can track in terms of the dynamic consequences of multiple and often conflicting interactions. These include "decision modules" (cell cycle and apoptosis), "stress modules" (autophagy and unfolded protein response), and the "signal processing modules" (estrogen receptor and growth factor signaling transduction networks).

Clarke says that a lot of "wet lab work" data from Lombardi laboratories, measuring how changes in gene and protein expression affects response to endocrine therapy, is being transferred into the model, along with published information from other institutions.

Not only does the model have the potential to explain why certain subtypes of breast cancer respond or become resistant to endocrine therapy, it could be used to help test potential new therapies, he says.

"If we tweak some gene in the model and all the breast cancer cells die, we can go back to the lab and test if that actually occurs," Clarke says. "That means that once we understand the decisions that these cancer cells are making, we have an efficient way of developing drugs or combination of drugs."

"The hard work is yet to be done, but it is just a matter a time before an effective, integrated model of regulatory networks in breast is informing the next wave of experiments and therapies," says Tyson.

Explore further: Resistance to anti-estrogen therapy in breast cancer due to natural cell response

Related Stories

Resistance to anti-estrogen therapy in breast cancer due to natural cell response

April 4, 2011
Most breast cancers are fueled by estrogen, and anti-estrogenic agents often work for a time to control the cancers. But many of these cancers become resistant to the drugs for reasons that are not understood, leaving patients ...

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.