Study points to new means of overcoming antiviral resistance in influenza

July 12, 2011, University of California - Irvine

UC Irvine researchers have found a new approach to the creation of customized therapies for virulent flu strains that resist current antiviral drugs.

Using powerful , UCI's Rommie Amaro and Robin Bush created a method to predict how pocket structures on the surface of influenza proteins promoting can be identified as these proteins evolve, allowing for possible pharmaceutical exploitation.

"Our results can influence the development of new drugs taking advantage of this unique feature," said Amaro, assistant professor of pharmaceutical sciences and computer science. The study appears online in Nature Communications.

The search for effective has always been hampered by the itself, which mutates from strain to strain, making it difficult to target with a specific pharmaceutical approach.

The most common clinical flu treatments are broad-based and only partially effective. They work by interrupting the action of an in the virus called neuraminidase, which plays a critical role in viral replication.

In 2006, scientists discovered that avian influenza neuraminidase exhibited a distinctive, pocket-shaped feature in the area pinpointed by clinically used drugs. They named it the 150-cavity.

Amaro and Bush, associate professor of ecology & evolutionary biology, conducted research at the San Diego Supercomputer Center and the National Institute for Computational Sciences to learn the conditions under which the pockets form.

They created molecular simulations of flu proteins to predict how these dynamic structures move and change and where and when the 150-cavity pockets will appear on the protein surface. This sequence analysis method could be utilized on evolving , providing vital information for drug design, Amaro said.

She added: "Having additional antivirals in our treatment arsenal would be advanta¬geous and potentially critical if a highly virulent strain – for exam¬ple, H5N1 – evolved to undergo rapid transmission among humans or if the already highly transmissible H1N1 pandemic virus was to develop resistance to existing antiviral drugs."

Related Stories

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.