Workings of brain protein suggest therapies for inherited intellectual disability, autism

July 21, 2011, Cell Press

Researchers now have a much clearer understanding of how mutations in a single gene can produce the complex cognitive deficits characteristic of Fragile X Syndrome, the most common inherited form of intellectual disability. As the majority of patients with Fragile X Syndrome also display autism-like symptoms, the findings offer hope for treating both conditions.

A report in the July 22nd issue of the journal Cell, published by Cell Press, defines a set of (mRNA) molecules that the Fragile-X protein (FMRP) binds in the brains of mice. Many of these mRNAs encode proteins that function at neurons' connection points. When properly bound, FMRP prevents the translation of these mRNAs into proteins until the time is right.

"By understanding for the first time the direct targets of FMRP and its actions, we open up a whole world of potential avenues for therapies designed to make kids with Fragile X or better," said Robert Darnell, a Howard Hughes Medical Institute investigator at The Rockefeller University.

"The power comes from taking two diseases with similar symptoms and looking at what is in common," added Jennifer Darnell, also at The Rockefeller University. Of the almost 850 identified targets of FMRP, she explained, it is likely only a much smaller subset has a real impact on health or disease.

The Darnell team's breakthrough uses a technique they developed a few years ago based on a "biochemical trick". They use to solidify the bonds between a protein, in this case FMRP, and the mRNAs it binds. Those protein-mRNA complexes could then be isolated and sequenced to reveal a "beautiful map" of the mRNA transcripts and precisely where they are bound to FMRP.

The experiments reveal that FMRP specifically binds to the protein-coding portions of those brain mRNAs. Jennifer Darnell said that distribution is unlike what they've seen before and looked much like the distribution of ribosomes, the that assemble proteins.

Further experiments suggest that FMRP acts as a "brake," reversibly stalling ribosomes after they bind mRNA. Robert Darnell likened FMRP to the nozzle at the end of a hose. It allows the mRNA transcripts to be loaded with ribosomes in the locations where they will be needed, and when the time is right, bursts of translation (protein synthesis) can occur. That sort of tight control is likely to be critical for the formation and plasticity of neural connections, the cellular foundation for learning and memory.

Their basic scientific discoveries suggest two different overall strategies for treating : by lowering the activity of particular proteins normally kept under wraps by FMRP or by replacing FMRP's ability to stall ribosomes. Notably, the Darnells say the latter is exactly what antibiotics do to slow the growth of bacteria.

"We may be able to take the edge off of the extra protein synthesis," Jennifer Darnell said.

Ultimately, there will be more to the story, Robert Darnell added. "FMRP is one of many regulatory proteins in the neuron. It doesn't work all by itself."

Explore further: Fragile X protein acts as toggle switch in brain cells

Related Stories

Fragile X protein acts as toggle switch in brain cells

June 9, 2011
New research shows how the protein missing in fragile X syndrome – the most common inherited form of intellectual disability – acts as a molecular toggle switch in brain cells.

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.