Latest research shows how cancer cells react to chemotherapy

July 14, 2011, CORDIS
Latest research shows how cancer cells react to chemotherapy

EU-funded researchers have made good progress in understanding how cancer cells can sometimes resist the effects of chemotherapy. This new knowledge will move forward the development of increasingly effective cancer treatments and could go some way to reducing relapse, good news for cancer patients and scientists alike.

As part of the APO-SYS ('Apoptosis systems biology applied to cancer and AIDS') project, which received a funding boost of EUR 11 million under the 'Health' Theme of the (FP7), the team of researchers from the Dublin-based Royal College of Surgeons in Ireland (RCSI) carried out a comprehensive study of .

Writing in the journal Molecular , the team explain how their findings show that chemotherapy resistance occurs due to metabolism differences between cancer cells and normal .

In chemotherapy, anti-cancer drugs are used to kill cancer cells. They do this by stimulating a process of called apoptosis, as well as hindering the function of the mitochondria. The mitochondria is responsible for regulating cell energy production and maintaining a balance of water and ions; therefore, if the mitochondria is paralysed, the whole cell cannot function.

However, in addition to producing energy in the mitochondria, cancer cells can also produce energy by using glucose in a process known as glycolysis.

Although previous studies have shown that the process of glycolysis can effectively bring cancer cells being targeted by chemotherapy 'back to life', the Irish team has now found that also helps to restore mitochondrial function, meaning that cancer cells may continue to function following the treatment.

This study, which was based on computational modelling and live cell microscopy, brings scientists closer to understanding why and how some cancer cells survive both apoptosis and mitochondria impairment.

Dr. Heinrich Huber, lead researcher on the study from the RCSI, says: 'Our findings show that when cancer cells are exposed to elevated glucose levels, mitochondrial function can be restored and osmotic homeostasis can be maintained, which contributes to resistance to chemotherapy. Therefore, we have found that in order for cancer treatments to be effective, they must target the cancer cell's ability to produce energy by using glucose within its fluids as well as destroying the mitochondria. It is also important that glucose levels in patients are monitored because this can be a factor in resistance to treatment.'

According to figures from the World Health Organization (WHO), cancer is one of the main causes of death worldwide and was responsible for 7.6 million deaths (approximately 13 % of all deaths) in 2008. The WHO also estimates that this figure will rise to over 11 million by 2030.

As understanding the mechanistic details of how cancer cells are able to resist chemotherapy can provide strategies to increase treatment efficiency and reduce clinical relapse, the team hope their research will lead to further discoveries in and go some way towards reducing the worldwide impact of this killer condition.

The APO-SYS project, which runs until 2012, brings together a pan-European consortium of experimental biologists, biomathematicians, biostatisticians, computer scientists and clinical scientists, all working on cell death pathways in health and disease, with a particular focus on cancer and AIDS.

Explore further: Research identifies how cancer cells cheat death

More information: Huber, H. J., et al. (2011) Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release. Molecular Systems Biology. DOI: 10.1038/msb.2011.2

Related Stories

Research identifies how cancer cells cheat death

June 8, 2011
Research led by David Litchfield of The University of Western Ontario has identified how biochemical pathways can be "rewired" in cancer cells to allow these cells to ignore signals that should normally trigger their death. ...

Recommended for you

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Scientists discover chemical which can kill glioblastoma cells

August 15, 2018
Aggressive brain tumour cells taken from patients self-destructed after being exposed to a chemical in laboratory tests, researchers have shown.

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

New clues into how 'trash bag of the cell' traps and seals off waste

August 15, 2018
The mechanics behind how an important process within the cell traps material before recycling it has puzzled scientists for years. But Penn State researchers have gained new insight into how this process seals off waste, ...

RUNX proteins act as regulators in DNA repair, study finds

August 15, 2018
A study by researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore has revealed that RUNX proteins are integral to efficient DNA repair via the Fanconi Anemia (FA) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.