Latest research shows how cancer cells react to chemotherapy

July 14, 2011, CORDIS
Latest research shows how cancer cells react to chemotherapy

EU-funded researchers have made good progress in understanding how cancer cells can sometimes resist the effects of chemotherapy. This new knowledge will move forward the development of increasingly effective cancer treatments and could go some way to reducing relapse, good news for cancer patients and scientists alike.

As part of the APO-SYS ('Apoptosis systems biology applied to cancer and AIDS') project, which received a funding boost of EUR 11 million under the 'Health' Theme of the (FP7), the team of researchers from the Dublin-based Royal College of Surgeons in Ireland (RCSI) carried out a comprehensive study of .

Writing in the journal Molecular , the team explain how their findings show that chemotherapy resistance occurs due to metabolism differences between cancer cells and normal .

In chemotherapy, anti-cancer drugs are used to kill cancer cells. They do this by stimulating a process of called apoptosis, as well as hindering the function of the mitochondria. The mitochondria is responsible for regulating cell energy production and maintaining a balance of water and ions; therefore, if the mitochondria is paralysed, the whole cell cannot function.

However, in addition to producing energy in the mitochondria, cancer cells can also produce energy by using glucose in a process known as glycolysis.

Although previous studies have shown that the process of glycolysis can effectively bring cancer cells being targeted by chemotherapy 'back to life', the Irish team has now found that also helps to restore mitochondrial function, meaning that cancer cells may continue to function following the treatment.

This study, which was based on computational modelling and live cell microscopy, brings scientists closer to understanding why and how some cancer cells survive both apoptosis and mitochondria impairment.

Dr. Heinrich Huber, lead researcher on the study from the RCSI, says: 'Our findings show that when cancer cells are exposed to elevated glucose levels, mitochondrial function can be restored and osmotic homeostasis can be maintained, which contributes to resistance to chemotherapy. Therefore, we have found that in order for cancer treatments to be effective, they must target the cancer cell's ability to produce energy by using glucose within its fluids as well as destroying the mitochondria. It is also important that glucose levels in patients are monitored because this can be a factor in resistance to treatment.'

According to figures from the World Health Organization (WHO), cancer is one of the main causes of death worldwide and was responsible for 7.6 million deaths (approximately 13 % of all deaths) in 2008. The WHO also estimates that this figure will rise to over 11 million by 2030.

As understanding the mechanistic details of how cancer cells are able to resist chemotherapy can provide strategies to increase treatment efficiency and reduce clinical relapse, the team hope their research will lead to further discoveries in and go some way towards reducing the worldwide impact of this killer condition.

The APO-SYS project, which runs until 2012, brings together a pan-European consortium of experimental biologists, biomathematicians, biostatisticians, computer scientists and clinical scientists, all working on cell death pathways in health and disease, with a particular focus on cancer and AIDS.

Explore further: Research identifies how cancer cells cheat death

More information: Huber, H. J., et al. (2011) Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release. Molecular Systems Biology. DOI: 10.1038/msb.2011.2

Related Stories

Research identifies how cancer cells cheat death

June 8, 2011
Research led by David Litchfield of The University of Western Ontario has identified how biochemical pathways can be "rewired" in cancer cells to allow these cells to ignore signals that should normally trigger their death. ...

Recommended for you

Study finds gut microbiome can control antitumor immune function in liver

May 24, 2018
Scientists have found a connection between bacteria in the gut and antitumor immune responses in the liver. Their study, published May 25 in Science, was led by researchers in the Center for Cancer Research (CCR) at the National ...

Low-fat diet tied to better breast cancer survival

May 24, 2018
(HealthDay)—Breast cancer patients who adopted a low-fat diet were more likely to survive for at least a decade after diagnosis, compared to patients who ate fattier fare, new research shows.

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

By forming clots in tumors, immune cell aids lung cancer's spread

May 24, 2018
University of North Carolina Lineberger Comprehensive Cancer Center researchers have found that by helping to form clots within tumors, immune cells that flock to a particular type of lung cancer are actually building a foundation ...

Cancer cells co-opt pain-sensing 'wasabi receptor' to survive oxidative stress

May 24, 2018
Anyone who's taken a bite of a sandwich with too much spicy mustard or a piece of sushi with too much wasabi can attest to the tear-inducing sensation these condiments can cause. These loud warnings to the nervous system ...

Tumor cells evade death through in extremis DNA repair

May 24, 2018
Greater knowledge of the mechanisms that contribute to the survival of tumour cells is key to vanquishing them. The study published today in the journal Cancer Cell, headed by Angel R. Nebreda, ICREA researcher at the Institute ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.