Protein switch controls how stem cells turn into new heart tissue

July 13, 2011, Oxford University
Stem cell research may indicate how heart tissue could be repaired after heart attacks.

(Medical Xpress) -- Oxford University researchers have identified a protein that can direct stem cells to become either new heart muscle or blood vessels.

The research, which was carried out in zebrafish, offers insight into how it might be possible one day to generate tissues to repair the after damage inflicted by a heart attack.

The scientists, based at the MRC Molecular Haematology Unit at the University of Oxford, identified a called ‘fibroblast growth factor’ (Fgf) as the controlling factor which determines whether developing heart cells become heart muscle or blood vessels.

They showed that manipulating levels of Fgf in zebrafish embryos could determine how much of each cell type was made.

The research, funded by the Medical Research Council and British Heart Foundation, is published in the journal Development.

Dr. Filipa Simoes, one of the first authors of the study, said: "Our study shows how having the correct concentrations of Fgf in the developing zebrafish heart ensures that the different cell types form properly.

"Crucially, we were able to convert blood and blood vessel cells into heart muscle cells by flipping genetic switches controlled by Fgf. The important next step to this research will be to identify the relevant cells in the human heart and take this finding to the next level."

Professor Roger Patient, who led the research at the University of Oxford, explained: "If we can manipulate these heart cells in fish embryos, in the longer term we can look to try and do the same in human hearts – even adult hearts – if we can identify the equivalent cells. This could bring significant benefit to heart attack patients or people with heart defects."

Professor Patient adds that early-stage studies in the lab like this are crucial in turning the potential of stem cells into effective treatments that can help patients recover from heart attacks.

"At the very least, our research will help the production of these cells in the laboratory for use in heart repair. Mending a damaged heart requires new muscle and associated . Therefore there is great interest in identifying and manipulating cells that make both."

The researchers also propose that these cells in the fish, with the potential to make both and vessels, may represent which played an important role in evolution. Over millions of years they may have been responsible for an increase the amount of cardiac muscle, enabling the heart to grow in size from two chambers in the zebrafish to four chambers in humans.

Professor Jeremy Pearson, associate medical director at the British Heart Foundation, who co-funded the study, said: "This excellent study throws new light on how our four-chambered hearts evolved from the simpler structures we see in other animals. The results significantly increase our understanding of the origins of found in the adult heart. This provides important clues to researchers working towards the goal of mending broken hearts after ."

Explore further: Heart has built-in repair mechanism

Related Stories

Heart has built-in repair mechanism

June 9, 2011
(Medical Xpress) -- Researchers have for the first time succeeded in transforming a new type of stem-like cell in the adult heart, into heart muscle in mice.

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.