Study reveals new link between Alzheimer's disease and healthy aging

August 15, 2011

Alzheimer's disease and frontotemporal lobar degeneration (FTLD) are two of the most prevalent forms of neurodegenerative disorders. In a study published online today in Genome Research, researchers have analyzed changes in gene expression in the aging and diseased brain, finding new clues to the biology of normal aging and neurodegenerative diseases.

Recent studies have identified changes in how genes are read, or expressed, in the brain either during aging or with neurodegenerative disease. However, no previous study had directly compared gene expression changes in healthy aging with those in diseased individuals.

In this report, an international team of researchers analyzed and compared changes in gene expression associated with aging and disease in a region of the brain known to be affected in both Alzheimer's and FTLD. Comparing samples from healthy individuals ranging from 16 to 102 years old with samples from diseased individuals, the investigation uncovered striking similarity in the changes in associated with aging and the neurodegenerative diseases.

"Surprisingly, these [diseased] samples contained the same aging-related changes as healthy individuals over the age of 80," said Dr. Jernej Ule of the MRC Laboratory of Molecular Biology, senior author of the study.

"Aging-related changes were apparent in the diseased individuals as young as 50 years," noted Dr. James Tollervey of the MRC Laboratory of , the first author of the study, "roughly 25 years before we would expect to see similar changes in healthy individuals."

While the similarities were striking, the group also observed notable differences between gene expression in the normal and expression in Alzheimer's and FTLD, particularly in the patterns of alternative splicing, a process by which parts of a RNA molecule are arranged differently to change the message, which can be potentially harmful if misregulated.

In normal aging, changes in alternative splicing largely affected genes associated with cellular metabolism, while disease-specific changes were associated with genes involved in neuron-specific function. The group found that there were changes in the expression of several genes coding for RNA binding proteins, which is likely responsible for at least part of the observed alterations in splicing.

The authors expect that this work will have broad impact for further insight into both normal aging and neurodegenerative disease. "These findings indicate that studies of could help unravel the processes that lead to neurodegeneration," said Ule.

"Conversely, our findings also indicate that studies of might help us understand how to delay the changes that take place in healthy individuals at an advanced age," added Dr. Boris Rogelj of the MRC Centre for Neurodegeneration Research at King's College London, a co-author of the study

More information: Tollervey JR, Wang Z, Hortobágyi T, Witten JT, Zarnack K, Kayikci M, Clark TA, Schweitzer AC, Rot G, Curk T, Zupan B, Rogelj B, Shaw CE, Ule J. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res doi: 10.1101/gr.122226.111

Related Stories

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

grosyhpgrosyhpgrosyhp
not rated yet Aug 15, 2011
There is no such thing like healthy aging. It sound like "healthy HIV".

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.