Researchers overcome barrier to cancer immunotherapy

September 2, 2011 By John Wallace

(Medical Xpress) -- In lab studies, researchers at Virginia Commonwealth University Massey Cancer Center have effectively reprogrammed cells of the innate and adaptive immune system to overcome a key cancer defense mechanism and develop long-lasting memory to reject breast cancer cells and guard against tumor relapse.

Reported in the and led by Masoud Manjili, D.V.M., Ph.D., assistant professor of microbiology and immunology at VCU Massey, the study discovered a way to improve adoptive (ACT) for breast cancer. ACT is a way to boost the immune system’s ability to detect and destroy cancer through an infusion of T cells programmed to go after specific cancer markers. T cells are key elements of the responsible for destroying invading pathogens. Nevertheless, the effectiveness of ACT is limited by myeloid derived suppressor cells (MDSCs), which are cells spawned by cancerous inflammation that block T cells’ ability to attack cells. Manjili and his research team discovered that ACT can overcome MDSCs by including natural killer T (NKT) cells in the therapy. NKT cells express on their surface markers of T cells and NK cells, and they act as a bridge between the innate and adaptive immune systems.

The study was developed as a laboratory protocol to re-program NKT and T cells to increase resistance to MDSCs and overcome breast cancer cells in an animal model of breast carcinoma. The research also showed that radiation therapy altered immune system cells, causing ACT to fail, whereas immune cells harvested prior to radiation therapy resulted in a more potent ACT response.

“Cancer is so complicated that our immune system cannot destroy it unless we gain the ability to re-program and evolve immune responses,” says Manjili. “Also, when developing and using immunotherapies, we need to be aware of how other treatments such as radiation therapy affect the immune system’s ability to fight cancer.”

The process the researchers used to reprogram the immune cells was developed in collaboration with Harry Bear, M.D., Ph.D., Lawrence Chair of Surgical Oncology at VCU Massey. Bear had been working on a way to increase the effectiveness of tumor-reactive T cells for use in ACT before Manjili modified the protocol to include NKT cells. Using animal models, they found they could program the T cells and NKT cells to develop a long-lasting memory for rejecting , which may also prevent breast cancer recurrence. The key was the cells’ newfound ability to overcome MDSCs, which only occurred when NKT cells were combined with the T cells. They tested a similar protocol using blood from a breast cancer patient and found it expanded the T cells’ ability to react against the patient’s tumor-associated protein, HER-2/neu.

“The results of our study suggest that cells of the innate , natural killer T in particular, should be included in adoptive T cell therapies,” says Manjili. “We’re very encouraged by our results and hope this approach will result in more effective adoptive cellular therapies against breast and other cancers, including melanoma, prostate and ovarian cancer.”

The researchers have obtained a grant from the Commonwealth Health Research Board to test this approach using peripheral blood obtained from breast cancer patients. They are optimistic the data from this future study will provide the rationale needed for the initiation of a Phase I/II clinical trial testing this new treatment in patients.

Explore further: New biomarker that predicts breast cancer relapse found

More information: The study’s full manuscript is available online at www.ncbi.nlm.nih.gov/pubmed/21670315

Related Stories

New biomarker that predicts breast cancer relapse found

May 16, 2011
Researchers from Virginia Commonwealth University Massey Cancer Center have discovered a new biomarker related to the body's immune system that can predict a breast cancer patients' risk of cancer recurrence. This breakthrough ...

Recommended for you

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.