Combination therapy rids common infection from implanted medical devices

September 8, 2011, Public Library of Science

Researchers at the University of Toronto have developed a therapy for a potentially deadly type of infection common in catheters, artificial joints and other "in-dwelling" medical devices. Their findings appear in the Open Access Journal PLoS Pathogens on September 8th.

The therapy targets , which are hard to treat in such devices because they are composed of biofilms—complex groupings of cells that attach to surfaces. Biofilms, in turn, are coated in a gooey matrix that resists drugs.

Patients often undergo surgical removal of the infected catheter or other device in an attempt to clear the disease and prevent a system-wide dispersal of infecting cells.

In this study, researchers showed that inhibiting the function of a protein called Hsp90 abolishes drug resistance in the two main fungal pathogens of humans, Candida albicans and Aspergillus fumigatus. "It takes classic antifungals, which were not effective against biofilms, and makes them very effective," said Prof. Leah Cowen, principal investigator on the study who holds the Canada Research Chair in Microbial Genomics and Infectious Disease at U of T's Department of Molecular Genetics.

In an animal model of a central venous catheter infected with deadly fungus, the researchers were able to completely clear the infection by inhibiting Hsp90 and applying antifungals.

Fungal pathogens are a major clinical problem. Candida albicans is the third-leading cause of intravascular catheter-related infections, and is fatal in about 30% of infections associated with devices. And the number of acquired fungal bloodstream infections has increased by more than 200% over the last two decades, partly because successful treatments for previously fatal diseases like cancer and AIDS have left many patients immune-compromised and susceptible to infection.

With more than 10 million patients per year now receiving , artificial joints and other devices, there is a pressing need for a better understanding of biofilms and their role in drug resistance of fungal pathogens.

Explore further: 1 species of pathogen can produce 2 distinct biofilms

More information: Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, et al. (2011) Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathog 7(9): e1002257. doi:10.1371/journal.ppat.1002257

Related Stories

1 species of pathogen can produce 2 distinct biofilms

August 2, 2011
Many medical devices, ranging from artificial hip joints to dentures and catheters, can come with unwelcome guests – complex communities of microbial pathogens called biofilms that are resistant to the human immune system ...

Recommended for you

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.