Scientists identify a key molecule that blocks abnormal blood vessel growth in tumors

September 21, 2011, H. Lee Moffitt Cancer Center & Research Institute

A new and better understanding of blood vessel growth and vascular development (angiogenesis) in cancer has been made possible by research carried out by a team of scientists from Moffitt Cancer Center, the University of Florida, Harvard University, Yale University and the Children's Hospital of Los Angeles.

The research team published the results of their investigation in a recent issue of .

"Vascular development is a fundamental that is tightly controlled by both pro-and anti-angiogenic mechanisms," said Edward Seto, Ph.D., a co-author of the study and professor and chairman of the Department of Molecular Oncology at Moffitt. "Physiological occurs in adults only under specific settings. Excess angiogenesis contributes to a variety of diseases, including cancer. In cancer, (VEGF) is commonly overproduced."

The goal of the research was to determine how angiogenesis is regulated by positive and negative biological activities.

"Understanding the biological principles that direct vascular growth has important because cancers are highly vascularized," concluded Seto.

This meant seeking a better understanding of the relationship between the chromatin insulator binding factor CTCF and how it regulates VEGF expression.

"At the heart of vascular development is VEGF which, in precise doses, is an important stimulator of normal blood vessel growth," explained Seto. "However, VEGF – probably the most important stimulator of normal and pathological – is regulated by a number of factors."

According to Seto, the study suggests that CTCF can block VEGF from being activated. Therefore, targeting CTCF may be an effective way to fine tune VEGF and control angiogenesis. The potential to manipulate CTCF opens a window to regulate VEGF and subsequently, the potential to manage angiogenesis and cancer.

"The real significance of this work has been apparent in experiments done at the University of Florida and at Harvard University, where our colleagues used mouse models to demonstrate that depletion of CTCF produces excess angiogenesis in animals," explained Seto. "Like finding a small key piece in a giant puzzle, it's truly exciting."

Explore further: New molecular pathway regulating angiogenesis may fight retinal disease, cancers

Related Stories

New molecular pathway regulating angiogenesis may fight retinal disease, cancers

May 29, 2011
Scientists identify in the journal Nature a new molecular pathway used to suppress blood vessel branching in the developing retina – a finding with potential therapeutic value for fighting diseases of the retina and ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.