Sniffing out Parkinson's

September 23, 2011 By Christine Buckley, University of Connecticut
Brain signaling, Parkinson's disease, and the sense of smell are all related in unexpected ways in a study by associate professor Joanne Conover, right, and graduate student Jessica Lennington. Credit: Daniel Buttrey/UConn Photo

A team of neuroscientists in UConn's College of Liberal Arts and Sciences has mapped the brain’s nerve connections that help control the sense of smell, which could add another brain region to the list of those affected by Parkinson’s Disease.

“Scientists are very interested in the connectivity of the brain,” says Joanne Conover, associate professor in the Department of Physiology and Neurobiology. “The better we can define the neuron populations in the brain, the better we can grasp how they are targeted for degeneration in diseases like Parkinson’s.”

Conover’s graduate student Jessica Lennington led a study focused on one of the few parts of the brain that continues to produce new neurons from stem cells after embryonic development and throughout adulthood. The region, called the subventricular zone, or SVZ, is in the center of the brain and plays a role in controlling animals’ sense of smell.

Clinical studies show that patients with Parkinson’s disease often gradually lose their sense of smell as the disease progresses. Neurobiologists think that this loss has to do with changes in signaling by – one of the most important signaling molecules in the brain – within and around the SVZ.

“People are looking for factors that regulate the SVZ, and dopamine is one of these factors,” Conover says. “We wanted to know: where is the dopamine coming from?”

Scientists previously thought a nearby brain region that controls motor function was sending dopamine to the SVZ. Lennington tested this idea using a fluorescent dye to trace the path of the dopamine neurons from the SVZ to their site of origin in the midbrain, which she visualized under a confocal microscope.

A segment of the mouse brain glows with fluorescent markers that show dopamine neurons. The green cells provide dopamine to the subventricular zone, a region that produces new neurons throughout adulthood to regulate the sense of smell. Credit: Jessica Lennington

What she found was completely unexpected.

“In all cases, there was a little region that was lighting up in a different part of the midbrain, not the region that others had previously assumed to be the origin,” she says.

The midbrain area that glowed with dopamine molecules is involved in basic processes like motivation, aversion, and rewards, which Conover and Lennington point out are intuitively associated with smell.

And being able to smell things, says Lennington, has been associated throughout evolution not just with deciding whether something’s good to eat, but with a host of survival decisions.

“It’s also involved in mating, parenting, and sensing seasonal changes,” she says.

This discovery, says Conover, suggests that Parkinson’s disease may also affect an area of the brain not previously associated with the disease. Although this study looked at mouse brains according to National Institutes of Health standards, Conover thinks the same could be true in the human brain.

Studies like these are the necessary small steps in understanding how all the many sections of the brain communicate with one another, she says.

“This was not an easy project because our data suggested something different from what others had previously reported. We had to prove what was going on while disproving others’ work,” says Conover. “It’s exciting to have it all come together.”

Lennington, who will defend her doctoral dissertation this semester, says that future work in this area will continue identifying the differences between populations of nerve cells that use dopamine in the .

“It’s still not known why the neurons involved in Parkinson’s degenerate,” says Conover. “We can speculate, but we don’t have this all figured out.”

Also involved in the study were former student Sara Pope, and current undergraduates Anna Goodheart and Linda Drozdowicz, physiology and neurobiology majors, and Board of Trustees Distinguished Professor of Psychology John Salamone. Stephen Daniels of the Department of Physiology and Neurobiology also participated in the study. The study was published on Sept. 14 in the Journal of Neuroscience.

Explore further: Nerve cells grown from stem cells give new insight into Parkinson's

Related Stories

Nerve cells grown from stem cells give new insight into Parkinson's

June 20, 2011
Oxford University researchers have succeeded in using stem cell technology to grow nerve cells in the laboratory from initial skin samples taken from Parkinson’s patients. It’s the first large-scale effort of its ...

Falls may be early sign of Alzheimer's

July 18, 2011
Falls and balance problems may be early indicators of Alzheimer’s disease, researchers at Washington University School of Medicine in St. Louis report July 17, 2011, at the Alzheimer’s Association International ...

How the brain processes humour helps us understand emotions felt by vegetative state patients

July 7, 2011
(Medical Xpress) -- How the human brain processes jokes may help researchers determine if a person in a vegetative state can experience positive emotions – a breakthrough that could help friends, relatives and doctors ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.