Stem cells, potential source of cancer-fighting T cells

September 20, 2011, Pennsylvania State University

Adult stem cells from mice converted to antigen-specific T cells -- the immune cells that fight cancer tumor cells -- show promise in cancer immunotherapy and may lead to a simpler, more efficient way to use the body's immune system to fight cancer, according to Penn State College of Medicine researchers.

"Cancer immunotherapy is a promising method to treat cancer patients," said Jianxsun Song, Ph.D., assistant professor, microbiology and immunology. "Tumors grow because patients lack the kind of antigen-specific T cells needed to kill the cancer. An approach called adoptive T cell immunotherapy generates the T cells outside the body, which are then used inside the body to target ."

It is complex and expensive to expand T cell lines in the lab, so researchers have been searching for ways to simplify the process. Song and his team found a way to use induced pluripotent stem (iPS) cells, which are that are genetically changed to be stem cells.

"Any cell can become a stem cell," Song explained. "It's a very good approach to generating the antigen-specific T cells and creates an unlimited source of cells for ."

By inserting DNA, researchers change the mouse iPS cells into and inject them into mice with tumors. After 50 days, 100 percent of the mice in the study were still alive, compared to 55 percent of control mice, which received tumor-reactive immune cells isolated from donors.

Researchers reported their results and were featured as the cover story in a recent issue of the journal Cancer Research.

A limitation of this potential therapy is that it currently takes at least six weeks for the iPS cells to develop into T cells in the body. In addition, potential side effects need to be considered. iPS cells may develop into other harmful cells in the body.

Researchers are now studying how to use the process in human cells.

Related Stories

Recommended for you

Researchers identify blood biomarkers that may help diagnose, confirm concussions

April 20, 2018
Researchers from the University of California, Irvine, Georgetown University and the University of Rochester have found that specific small molecules in blood plasma may be useful in determining whether someone has sustained ...

Stem-cell technology aids 3-D printed cartilage repair

April 20, 2018
Novel stem-cell technology developed at Swinburne will be used to grow the massive number of stem cells required for a new hand-held 3-D printer that will enable surgeons to create patient-specific bone and cartilage.

DOR protein deficiency favors the development of obesity

April 20, 2018
Obesity is a world health problem. Excessive accumulation of fat tissue (adipose tissue) increases the risk of cardiovascular disease, hypertension, diabetes and some types of cancer. However, some obese individuals are less ...

Defect in debilitating neurodegenerative disease reversed in mouse nerves

April 19, 2018
Scientists have developed a new drug compound that shows promise as a future treatment for Charcot-Marie-Tooth disease, an inherited, often painful neurodegenerative condition that affects nerves in the hands, arms, feet ...

Enduring cold temperatures alters fat cell epigenetics

April 19, 2018
A new study in fat cells has revealed a molecular mechanism that controls how lifestyle choices and the external environment affect gene expression. This mechanism includes potential targets for next-generation drug discovery ...

Molecule that dilates blood vessels hints at new way to treat heart disease

April 19, 2018
Americans die of heart or cardiovascular disease at an alarming rate. In fact, heart attacks, strokes and related diseases will kill an estimated 610,000 Americans this year alone. Some medications help, but to better tackle ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.