Stem cells, potential source of cancer-fighting T cells

September 20, 2011

Adult stem cells from mice converted to antigen-specific T cells -- the immune cells that fight cancer tumor cells -- show promise in cancer immunotherapy and may lead to a simpler, more efficient way to use the body's immune system to fight cancer, according to Penn State College of Medicine researchers.

"Cancer immunotherapy is a promising method to treat cancer patients," said Jianxsun Song, Ph.D., assistant professor, microbiology and immunology. "Tumors grow because patients lack the kind of antigen-specific T cells needed to kill the cancer. An approach called adoptive T cell immunotherapy generates the T cells outside the body, which are then used inside the body to target ."

It is complex and expensive to expand T cell lines in the lab, so researchers have been searching for ways to simplify the process. Song and his team found a way to use induced pluripotent stem (iPS) cells, which are that are genetically changed to be stem cells.

"Any cell can become a stem cell," Song explained. "It's a very good approach to generating the antigen-specific T cells and creates an unlimited source of cells for ."

By inserting DNA, researchers change the mouse iPS cells into and inject them into mice with tumors. After 50 days, 100 percent of the mice in the study were still alive, compared to 55 percent of control mice, which received tumor-reactive immune cells isolated from donors.

Researchers reported their results and were featured as the cover story in a recent issue of the journal Cancer Research.

A limitation of this potential therapy is that it currently takes at least six weeks for the iPS cells to develop into T cells in the body. In addition, potential side effects need to be considered. iPS cells may develop into other harmful cells in the body.

Researchers are now studying how to use the process in human cells.

Related Stories

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.